精英家教網 > 初中數學 > 題目詳情

【題目】目前,步行已成為人們最喜愛的健身方法之一,通過手機可以計算行走的步數與相應的能量消耗.對比手機數據發現:小瓊步行13500步與小剛步行9000步消耗的能量相同,若每消耗1千卡能量小瓊行走的步數比小剛多15步,求小剛每消耗1千卡能量需要行走多少步?

【答案】解:設小剛每消耗1千卡能量需要行走x步. 根據題意,得 ,
解得 x=30,
經檢驗,x=30是原方程的根.
答:小剛每消耗1千卡能量需要行走30步.
【解析】設小剛每消耗1千卡能量需要行走x步,則小瓊每消耗1千卡能量需要行走(x+15)步,根據數量關系消耗能量千卡數=行走步數÷每消耗1千卡能量需要行走步數結合小瓊步行123500步與小剛步行9 000步消耗的能量相同,即可得出關于x的分式方程,解之后經檢驗即可得出結論.
【考點精析】通過靈活運用分式方程的應用,掌握列分式方程解應用題的步驟:審題、設未知數、找相等關系列方程、解方程并驗根、寫出答案(要有單位)即可以解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】閱讀以下兩小題后作出相應的解答:

(1)同位角相等,兩直線平行兩直線平行,同位角相等,這兩個命題的題設和結論在命題中的位置恰好對凋,我們把其中一命題叫做另一個命題的逆命題,請你寫出命題角平分線上的點到角兩邊的距離相等的逆命題,并指出逆命題的題設和結論;

(2)根據以下語句作出圖形,并寫出該命題的文字敘述.

已知:過直線AB上一點O任作射線OC,OM、ON分別平分AOC、BOC,則OMON.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1如圖1,已知:在ABC中,BAC90°,AB=AC,直線m經過點A,BD直線m, CE直線m,垂足分別為點D、E.證明:DE=BD+CE.

2 如圖2,將1中的條件改為:在ABC中,AB=ACD、AE三點都在直線m,并且有BDA=AEC=BAC=,其中為任意銳角或鈍角.請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

3拓展與應用:如圖3,DED、AE三點所在直線m上的兩動點(D、A、E三點互不重合),FBAC平分線上的一點,ABFACF均為等邊三角形,連接BD、CE,BDA=AEC=BAC,試判斷DEF的形狀.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)若多邊形的內角和為 2340°,求此多邊形的邊數;

(2)一個 n 邊形的每個外角都相等,如果它的內角與相鄰外角的度數之比為 13: 2,求 n 的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在△ABC 中,邊 AC,BC 的垂直平分線的交點 O 落在邊 AB 上,則△ABC 的形狀是( )

A. 鈍角三角形 B. 直角三角形 C. 銳角三角形 D. 任意三角形

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線AB,CD 相交于點O,∠AOD=3BOD+20°.

(1)求∠BOD的度數;

(2)O為端點引射線OE,OF ,射線OE平分∠BOD,且∠EOF= 90°,求∠BOF的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系上,△ABC的頂點A和C分別在x軸、y軸的正半軸上,且AB∥y軸,點B(1,3),將△ABC以點B為旋轉中心順時針方向旋轉90°得到△DBE,恰好有一反比例函數y= 圖象恰好過點D,則k的值為(
A.6
B.﹣6
C.9
D.﹣9

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知某電腦公司有A型、B型、C型三種型號的電腦,其價格分別為A型每臺6 000元,B型每臺4 000元,C型每臺2 500元,我市東坡中學計劃將100 500元錢全部用于該電腦公司購進其中兩種不同型號的電腦共36臺,請你設計出幾種不同的購買方案供該校選擇,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,已知等邊ABC的邊長為a,P是ABC內一點,PD∥AB,PE∥BC,PF∥AC,點D、E、F分別在BC、AC、AB上,猜想:PD+PE+PF等于多少,并證明你的猜想.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视