精英家教網 > 初中數學 > 題目詳情

【題目】如圖,菱形ABCD的邊長為2cm,∠DAB=60°.點PA點出發,以cm/s的速度,沿ACC作勻速運動;與此同時,點Q也從A點出發,以1cm/s的速度,沿射線AB作勻速運動.當P運動到C點時,P、Q都停止運動.設點P運動的時間為ts

1)當P異于AC時,請說明PQ∥BC;

2)以P為圓心、PQ長為半徑作圓,請問:在整個運動過程中,t為怎樣的值時,⊙P與邊BC分別有1個公共點和2個公共點?

【答案】解:(1四邊形ABCD是菱形,且菱形ABCD的邊長為2,

∴AB=BC=2∠BAC=∠DAB。

∵∠DAB=60°,∴∠BAC=∠BCA=30°。

如圖1,連接BDACO。

四邊形ABCD是菱形,

∴AC⊥BDOA=AC。

∴OB=AB=1。∴OA=AC=2OA=2。

運動ts后,AP=t,AO=t,

∵∠PAQ=∠CAB,∴△PAQ∽△CAB.∴∠APQ=∠ACB.

∴PQ∥BC.

2)如圖2,⊙PBC切于點M,連接PM,則PM⊥BC。

Rt△CPM中,∵∠PCM=30°,∴PM=

PM=PQ=AQ=t,即=t,解得t=,

此時⊙P與邊BC有一個公共點。

如圖3⊙P過點B,此時PQ=PB,

∵∠PQB=∠PAQ+∠APQ=60°

∴△PQB為等邊三角形。∴QB=PQ=AQ=t∴t=1。

時,⊙P與邊BC2個公共點。

如圖4,

⊙P過點C,此時PC=PQ,即=t

∴t=。

1≤t≤時,⊙P與邊BC有一個公共點。

當點P運動到點C,即t=2時,Q、B重合,⊙P過點B,

此時,⊙P與邊BC有一個公共點。

綜上所述,當t=1≤t≤t=2時,⊙P與菱形ABCD的邊BC1個公共點;當時,⊙P與邊BC2個公共點。

【解析】

直線與圓的位置關系,菱形的性質,含30°角直角三角形的性質,相似三角形的判定和性質,平行的判定,切線的性質,等邊三角形的判定和性質。

2)分⊙PBC切于點M⊙P過點B,⊙P過點C和點P運動到點C四各情況討論即可。

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,∠AOB90°,點C,D分別在射線OAOB上,CE是∠ACD的平分線,CE的反向延長線與∠CDO的平分線交于點F

1)當∠OCD56°(如圖①),試求∠F;

2)當C,D在射線OA、OB上任意移動時(不與點O重合)(如圖②),∠F的大小是否變化?若變化,請說明理由若不變化求出∠F

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,E,F是正方形ABCD的對角線AC上的兩點,且AE=CF.

(1)求證:四邊形BEDF是菱形;

(2)若正方形ABCD的邊長為4,AE=,求菱形BEDF的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,圓⊙O的半徑為1,等腰直角三角形ABC的頂點B的坐標為(2,0),∠CAB=90°,AC=AB,頂點A在⊙O上運動,當直線AB與⊙O相切時A點的坐標為____________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC≌△ADE,∠DAC70°,∠BAE100°,BC、DE相交于點F,則∠DFB度數為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數的圖象如圖所示,給出以下結論:;②;③;④.其中所有正確結論的序號是(

A. ③④ B. ②③ C. ①④ D. ①②③

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下列材料:

問題:已知方程x2+x﹣1=0,求一個一元二次方程,使它的根分別是已知方程根的2倍.

解:設所求方程的根為y,則y=2x,所以x=,把x=,代入已知方程,

得(2 +﹣1=0.

化簡,得y2+2y﹣4=0,

故所求方程為y2+2y﹣4=0

這種利用方程根的代換求新方程的方法,我們稱為換根法”.

請用閱讀材料提供的換根法求新方程(要求:把所求方程化為一般形式):

(1)已知方程x2+2x﹣1=0,求一個一元二次方程,使它的根分別是已知方程根的相反數,則所求方程為 ;

(2)已知關于x的一元二次方程ax2+bx+c=0(a≠0)有兩個不等于零的實數根,求一個一元二次方程,使它的根分別是已知方程根的倒數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABC中,ACB=90°,DAB的中點,過點BCBE=∠ABE與射線CA相交于點E,與射線CD相交于點F

1)如圖,當點E在線段CA上時,求證:BECD;

2)若BE=CD,那么線段ACBC之間具有怎樣的數量關系?并證明你所得到的結論;

3)若BDF是等腰三角形,求A的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是某地火車站及周圍的簡單平面圖.(每個小正方形的邊長代表1千米.)

1)請以火車站所在的位置為坐標原點,建立平面直角坐標系,并表示出體育場A、超市B市場C、文化宮D的坐標.

2)在這個坐標平面內,連接OA,若∠AOB的度數大約為53°,請利用所給數據描述體育場相對于火車站的位置.

3)要想用第(2)問的方法描述文化宮在火車站的什么位置,需要測量哪些數據?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视