【題目】如圖,在△ABC中,A點坐標為(4,3),B點坐標為(-1,4),C點坐標為(-3,1).
(1)在圖中畫出△ABC關于x軸對稱的△A′B′C′(不寫畫法),并寫出點A′,B′,C′的坐標.
(2)在x軸上畫出點P,使PA+PC最。
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,對△ABC進行循環往復的軸對稱變換,若原來點A坐標是(2,3),則經過第2018次變換后所得的A點坐標是________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在長方形紙片中,
,折疊紙片,使得點
落在
邊上的點
處,折痕為
,點
分別在邊
和
上,當點
恰好是
邊的中點時,點
與點
重合,若在折疊過程中
,則
等于________
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D,E是△ABC內的兩點,AD平分∠BAC,∠EBC=∠E=60°.若BE=9cm,DE=3cm,則BC的長為 ( 。
A.12cmB.11cmC.9cmD.6cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)問題發現
如圖1,△ABC和△DCE都是等邊三角形,點B、D、E在同一直線上,連接AE.
填空:
①∠AEC的度數為 ;
②線段AE、BD之間的數量關系為 .
(2)拓展探究
如圖2,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,點B、D、E在同一直線上,CM為△DCE中DE邊上的高,連接AE.試求∠AEB的度數及判斷線段CM、AE、BM之間的數量關系,并說明理由.
(3)解決問題
如圖3,在正方形ABCD中,CD=2,點P在以AC為直徑的半圓上,AP=1,①∠DPC= °; ②請直接寫出點D到PC的距離為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2-5ax+4a與x軸相交于點A,B,且過點C(5,4).
(1)求a的值和該拋物線頂點P的坐標;
(2)請你設計一種平移的方法,使平移后拋物線的頂點落在第二象限,并寫出平移后拋物線的表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC為直角三角形,∠C=90°,BC=2cm,∠A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點C、B、E、F在同一條直線上,點B與點E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當點C與點F重合時停止.設Rt△ABC與矩形DEFG的重疊部分的面積為ycm2,運動時間xs.能反映ycm2與xs之間函數關系的大致圖象是( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“網絡紅包”是互聯網運營商、商家通過組織互聯網線上活動、派發紅包的互聯網工具,是朋友間互道祝福的表達形式之一.“網絡紅包”春節活動已經逐漸深入到大眾的生活中,得到了人們較為廣泛的關注.根據某咨詢公司(2018年中國春節“網絡紅包”專題調查報告》顯示:在接受調查的8萬名網民中,對“網絡紅包”春節話動了解程度的占比方面,“較為了解”和“很了解”的網民共占比64%,分別占比36%和28%.在“不了解”和“只了解一兩個“的受訪網民中,“不了解”的網民人數比“只了解一兩個”的網民人數多25%.如圖是該咨詢公司繪制的“中國網民關于‘網絡紅包’春節活動了解情況調查”統計圖(不完整).
請根據以上信息解答下列問題:
(1)在受訪的網民中,“不了解”和“只了解一兩個”的網民人數共有 萬人,其中“不了解”的網民人數是 萬人;
(2)請將扇形統計圖補充完整;
(3)2017除夕晚上小聰和爸爸、媽媽一起玩微信搶紅包游戲,他們約定由爸爸在家人微信群中先后發兩次“拼手氣紅包”,每次發放的紅包數是3個,每個紅包抽到的金額隨機(每兩個紅包的金額都不相等),每次誰抽到紅包的金額最大誰就是“手氣最佳”者,求兩次游戲中小聰都能獲得“手氣最佳”的概率為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點E是BC的中點,AB⊥BC,DC⊥BC,AE平分∠BAD,下列結論:①∠AED=90°②∠ADE=∠CDE③DE=BE④AD=AB+CD,四個結論中成立的是( 。
A. B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com