【題目】如圖,△ABC為直角三角形,∠C=90°,BC=2cm,∠A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點C、B、E、F在同一條直線上,點B與點E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當點C與點F重合時停止.設Rt△ABC與矩形DEFG的重疊部分的面積為ycm2,運動時間xs.能反映ycm2與xs之間函數關系的大致圖象是( 。
A. B.
C.
D.
【答案】A
【解析】∵∠C=90°,BC=2cm,∠A=30°,
∴AB=4,
由勾股定理得:AC=2,
∵四邊形DEFG為矩形,∠C=90,
∴DE=GF=2,∠C=∠DEF=90°,
∴AC∥DE,
此題有三種情況:
(1)當0<x<2時,AB交DE于H,如圖
∵DE∥AC,
∴,
即,
解得:EH=x,
所以y=xx=
x2,
∵x 、y之間是二次函數,
所以所選答案C錯誤,答案D錯誤,
∵a=>0,開口向上;
(2)當2≤x≤6時,如圖,
此時y=×2×2
=2
,
(3)當6<x≤8時,如圖,設△ABC的面積是s1,△FNB的面積是s2,
BF=x﹣6,與(1)類同,同法可求FN=X﹣6
,
∴y=s1﹣s2,
=×2×2
﹣
×(x﹣6)×(
X﹣6
),
=﹣x2+6
x﹣16
,
∵﹣<0,
∴開口向下,
所以答案A正確,答案B錯誤,
故選:A.
科目:初中數學 來源: 題型:
【題目】如圖,已知反比例函數y= 與一次函數y=x+b的圖形在第一象限相交于點A(1,﹣k+4).
(1)試確定這兩函數的表達式;
(2)求出這兩個函數圖象的另一個交點B的坐標,并求△AOB的面積;
(3)根據圖象直接寫出反比例函數值大于一次函數值的x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點M(n,﹣n )在第二象限,過點M的直線y=kx+b(0<k<1)分別交x軸、y軸于點A,B,過點M作MN⊥x軸于點N,則下列點在線段AN的是( 。
A. ((k﹣1)n,0) B. ((k+)n,0)) C. (
,0) D. ((k+1)n,0)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數與反比例函數
的圖象交于點
和
,與
軸交于點
.
(1)求=______,
=______;
(2)根據函數圖象可知,當時,
的取值范圍是____________.
(3)求
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,點O是AC邊上的一個動點,過點O作直線MN∥BC,設MN交∠BCA的角平分線于點E,交∠BCA的外角平分線于點F.
(1)求證:EO=FO;
(2)當點O運動到何處時,四邊形AECF是矩形?并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AC=9,AB=12,BC=15,P為BC邊上一動點,PG⊥AC于點G,PH⊥AB于點H.
(1)求證:四邊形AGPH是矩形;
(2)在點P的運動過程中,GH的長度是否存在最小值?若存在,請求出最小值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,E為AC邊的中點,過點A作AD⊥AB交BE的延長線于點D,CG平分∠ACB交BD于點G.F為AB邊上一點,連接CF,且∠ACF=∠CBG.
(1)求證:BG=CF;
(2)求證:CF=2DE;
(3)若DE=1,求AD的長
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com