【題目】為鼓勵居民節約用電,電力公司規定如下電費計算方法:每月用電不超過100度,按每度0.6元計費;每月用電超過100度,超過部分按每度1元計費.
(1)若某用戶某年1月交電費88元,那么該用戶1月份用電多少度?
(2)若某用戶某年2月份平均每度電費0.75元,那么該用戶2月份用電多少度?應交電費多少元?
【答案】(1)128;(2)160度,120元.
【解析】
根據題意可知,電費計算方法為:每月用電不超過100度,按每度0.6元計費;每月用電超過100度,超過部分按每度1元計費.
(1)如果用電100度,則需交電費100×0.6=60元,某用戶交電費88元,則該用戶用電超過100度,設該用戶1月份用電
度,根據題意列出方程求解即可.
(2)由于此用戶平均每度電費0.75元,所以其用電一定超過100度,所以可設此用戶2月份共用電度,則其按每度0.6元費的為100度,按每度1元交費的為
度,由此可得等量關系式:
解此方程即得用電多少度,進而求出應交電費多少元.
(1)如果用電100度,則需交電費100×0.6=60元,某用戶交電費88元,則該用戶用電超過100度,
設該用戶1月份用電度,
解得:
答:設該用戶1月份用電128度.
(2)設此用戶2月份共用電度,
解得:
當時,
元.
答:該用戶2月份用電160度,應交電費,120元.
科目:初中數學 來源: 題型:
【題目】在等邊△ABC中:
(1)如圖1,P,Q是BC邊上的兩點,AP=AQ,∠BAP=20°,求∠AQB的度數;
(2)點P,Q是BC邊上的兩個動點(不與點B,C重合),點P在點Q的左側,且AP=AQ,點Q關于直線AC的對稱點為M,連接AM,PM.
①依題意將圖2補全;
②小茹通過觀察、實驗提出猜想:在點P,Q運動的過程中,始終有PA=PM,小茹把這個猜想與同學們進行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:要證明PA=PM,只需證△APM是等邊三角形;
想法2:在BA上取一點N,使得BN=BP,要證明PA=PM,只需證△ANP≌△PCM;
想法3:將線段BP繞點B順時針旋轉60°,得到線段BK,要證PA=PM,只需證PA=CK,PM=CK…
請你參考上面的想法,幫助小茹證明PA=PM(一種方法即可).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+2與x軸交于點A(1,0)和B(4,0).
(1)求拋物線的解析式;
(2)若拋物線的對稱軸交x軸于點E,點F是位于x軸上方對稱軸上一點,FC∥x軸,與對稱軸右側的拋物線交于點C,且四邊形OECF是平行四邊形,求點C的坐標;
(3)在(2)的條件下,拋物線的對稱軸上是否存在點P,使△OCP是直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A(2,3)和點B(0,2),點A在反比例函數y= 的圖象上.作射線AB,再將射線AB繞點A按逆時針方向旋轉45°,交反比例函數圖象于點C,則點C的坐標為.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有四張背面一模一樣的卡片,卡片正面分別寫著一個函數關系式,分別是y=2x,y=x2﹣3(x>0),y= (x>0),y=﹣
(x<0),將卡片順序打亂后,隨意從中抽取一張,取出的卡片上的函數是y隨x的增大而增大的概率是( )
A.
B.
C.
D.1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內角∠ABC、外角∠ACF.以下結論:①AD∥BC;②∠ACB=2∠ADB;③;④BD平分∠ADC;⑤∠BDC=
∠BAC.其中正確的結論有_______個.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分別為E,F,連接EF,則△AEF的面積是( )
A.4
B.3
C.2
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com