【題目】如圖,在平面直角坐標系xOy中,拋物線y=ax2+bx經過兩點A(﹣1,1),B(2,2).過點B作BC∥x軸,交拋物線于點C,交y軸于點D.
(1)求此拋物線對應的函數表達式及點C的坐標;
(2)若拋物線上存在點M,使得△BCM的面積為 ,求出點M的坐標;
(3)連接OA、OB、OC、AC,在坐標平面內,求使得△AOC與△OBN相似(邊OA與邊OB對應)的點N的坐標.
【答案】
(1)
解:把A(﹣1,1),B(2,2)代入y=ax2+bx得: ,解得
,
故拋物線的函數表達式為y= x2﹣
x,
∵BC∥x軸,
設C(x0,2).
∴ x02﹣
x0=2,解得:x0=﹣
或x0=2,
∵x0<0,
∴C(﹣ ,2)
(2)
解:設△BCM邊BC上的高為h,
∵BC= ,
∴S△BCM= h=
,
∴h=2,點M即為拋物線上到BC的距離為2的點,
∴M的縱坐標為0或4,令y= x2﹣
x=0,
解得:x1=0,x2= ,
∴M1(0,0),M2( ,0),令y=
x2﹣
x=4,
解得:x3= ,x4=
,∴M3( ,0),M4(
,4),
綜上所述:M點的坐標為:(0,0),( ,0),(
,0),(
,4)
(3)
解:∵A(﹣1,1),B(2,2),C(﹣ ,2),D(0,2),
∴OB=2 ,OA=
,OC=
,
∴∠AOD=∠BOD=45°,tan∠COD= ,
①如圖1,
當△AOC∽△BON時, ,∠AOC=∠BON,
∴ON=2OC=5,
過N作NE⊥x軸于E,
∵∠COD=45°﹣∠AOC=45°﹣∠BON=∠NOE,
在Rt△NOE中,tan∠NOE=tan∠COD= ,
∴OE=4,NE=3,
∴N(4,3)同理可得N(3,4);
②如圖2,
當△AOC∽△OBN時, ,∠AOC=∠OBN,
∴BN=2OC=5,
過B作BG⊥x軸于G,過N作x軸的平行線交BG的延長線于F,
∴NF⊥BF,
∵∠COD=45°﹣∠AOC=45°﹣∠OBN=∠NBF,
∴tan∠NBF=tan∠COD= ,
∴BF=4,NF=3,
∴N(﹣1,﹣2),同理N(﹣2,﹣1),
綜上所述:使得△AOC與△OBN相似(邊OA與邊OB對應)的點N的坐標是(4,3),(3,4),(﹣1,﹣2),(﹣2,﹣1).
【解析】(1)把A(﹣1,1),B(2,2)代入y=ax2+bx求得拋物線的函數表達式為y= x2﹣
x,由于BC∥x軸,設C(x0 , 2).于是得到方程
x02﹣
x0=2,即可得到結論;(2)設△BCM邊BC上的高為h,根據已知條件得到h=2,點M即為拋物線上到BC的距離為2的點,于是得到M的縱坐標為0或4,令y=
x2﹣
x=0,或令y=
x2﹣
x=4,解方程即可得到結論;(3)解直角三角形得到OB=2
,OA=
,OC=
,∠AOD=∠BOD=45°,tan∠COD=
①如圖1,當△AOC∽△BON時,求得ON=2OC=5,過N作NE⊥x軸于E,根據三角函數的定義得到OE=4,NE=3,于是得到結果;②如圖2,根據相似三角形的性質得到BN=2OC=5,過B作BG⊥x軸于G,過N作x軸的平行線交BG的延長線于F解直角三角形得到BF=4,NF=3于是得到結論.本題主要考查的是二次函數與相似三角形的綜合應用,難度較大,解答本題需要同學們熟練掌握二次函數和相似三角形的相關性質.
【考點精析】本題主要考查了二次函數的性質和相似三角形的性質的相關知識點,需要掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小;對應角相等,對應邊成比例的兩個三角形叫做相似三角形才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】某工廠接受了20天內生產1200臺GH型電子產品的總任務.已知每臺GH型產品由4個G型裝置和3個H型裝置配套組成.工廠現有80名工人,每個工人每天能加工6個G型裝置或3個H型裝置.工廠將所有工人分成兩組同時開始加工,每組分別加工一種裝置,并要求每天加工的G、H型裝置數量正好全部配套組成GH型產品.
(1)按照這樣的生產方式,工廠每天能配套組成多少套GH型電子產品?
(2)為了在規定期限內完成總任務,工廠決定補充一些新工人,這些新工人只能獨立進行G型裝置的加工,且每人每天只能加工4個G型裝置.請問至少需要補充多少名新工人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AB=50,AC=30,D、E、F分別是AC、AB、BC的中點.點P從點D出發沿折線DE﹣EF﹣FC﹣CD以每秒7個單位長的速度勻速運動;點Q從點B出發沿BA方向以每秒4個單位長的速度勻速運動,過點Q作射線QK⊥AB,交折線BC﹣CA于點G.點P、Q同時出發,當點P繞行一周回到點D時停止運動,點Q也隨之停止.設點P、Q運動的時間是t秒(t>0).
(1)D、F兩點間的距離是;
(2)射線QK能否把四邊形CDEF分成面積相等的兩部分?若能,求出t的值.若不能,說明理由;
(3)當點P運動到折線EF﹣FC上,且點P又恰好落在射線QK上時,求t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】以x為自變量的二次函數y=x2﹣2(b﹣2)x+b2﹣1的圖象不經過第三象限,則實數b的取值范圍是( )
A.b≥
B.b≥1或b≤﹣1
C.b≥2
D.1≤b≤2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】直線y=kx+b與拋物線y= x2交于A(x1 , y1)、B(x2 , y2)兩點,當OA⊥OB時,直線AB恒過一個定點,該定點坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一段拋物線:y=﹣x(x﹣2)(0≤x≤2)記為C1 , 它與x軸交于兩點O,A1;將C1繞A1旋轉180°得到C2 , 交x軸于A2;將C2繞A2旋轉180°得到C3 , 交x軸于A3;…如此進行下去,直至得到C6 , 若點P(11,m)在第6段拋物線C6上,則m= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A為函數y= (x>0)圖象上一點,連結OA,交函數y=
(x>0)的圖象于點B,點C是x軸上一點,且AO=AC,則△ABC的面積為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com