【題目】如圖,四邊形ABCD內接于⊙O,BC=CD,∠C=2∠BAD.
(1)求∠BOD的度數;
(2)求證:四邊形OBCD是菱形;
(3)若⊙O的半徑為r,∠ODA=45°,求△ABD的面積(用含r的代數式表示).
【答案】(1)120°;(2)證明見解析;(3)(1+)r2.
【解析】
(1)結合圓的內接四邊形對角互補,運用方程思想,再運用圓周角定理求解即可;
(2)連接OC,證明△BOC和△DOC都是等邊三角形,進而即可證明結論;
(3)分別計算△BOD,△AOD和△AOB的面積,再求和即可.
(1)∵四邊形ABCD內接于⊙O,
∴∠C+∠BAD=180°,
∵∠C=2∠BAD,
∴∠C=120°,∠BAD=60°,
∴∠BOD=2∠BAD=120°;
(2)如圖1連接OC,
∵BC=CD,
∴∠BOC=∠DOC=60°,
∵OB=OC=OD,
∴△BOC和△DOC都是等邊三角形,
∴OB=OC=OD=BC=DC,
∴四邊形OBCD是菱形,
(3)如圖2,連接OA,過點A作BO的垂線交BO的延長線于點N,
∵∠BOD=120°,OB=OD,
∴∠ODM=30°,
∵∠BOM=∠DOM,
∴OM⊥BD,
∴OM=r,DM=
r,
∴BD=2DM=r,
∴S△BOD=r2,
∵∠ODA=45°,OA=OD,
∴∠OAD=∠ODA=45°,
∴∠AOD=90°,
∴S△AOD=r2,
∵∠BOD=120°,∠AOD=90°,
∴∠AOB=150°,
∴∠AON=30°,
∴AN=OA=
r,
∴S△AOB=r2,
∴△ABD的面積為r2+
r2+
r2=(1+
)r2.
科目:初中數學 來源: 題型:
【題目】某校對九年級學生進行隨機抽樣調查,被抽到的學生從物理、化學、生物、地理、歷史和政治這六科中選出自己最喜歡的科目,將調查數據匯總整理后,繪制了兩幅不同的統計圖,請你根據圖中信息解答下列問題:
(1)被抽查的學生共有多少人?求出地理學科所在扇形的圓心角;
(2)將折線統計圖補充完整;
(3)若該校九年級學生約2000人請你估算喜歡物理學科的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店銷售一種成本為20元的商品,經調研,當該商品每件售價為30元時,每天可銷售200件:當每件的售價每增加1元,每天的銷量將減少5件.
求銷量
件
與售價
元
之間的函數表達式;
如果每天的銷量不低于150件,那么,當售價為多少元時,每天獲取的利潤最大,最大利潤是多少?
該商店老板熱心公益事業,決定從每天的銷售利潤中捐出100元給希望工程,為保證捐款后每天剩余利潤不低于2900元,請直接寫出該商品售價的范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們定義:有一組鄰角相等的凸四邊形叫做“等鄰角四邊形”.
概念理解:在“矩形、菱形和正方形”這三種特殊四邊形中,不一定是“等鄰角四邊形”的是______.
問題探究:如圖,在等鄰角四邊形ABCD中,∠B=∠C,AB=3,BC=9,P為線段BC上一動點(不包含端點B,C),Q為直線CD上一動點,連結PA,PQ,在P,Q的運動過程中始終滿足∠APQ=∠B,當CQ達到最大時,試求此時BP的長.
應用拓展:在以60°為等角的等鄰角四邊形ABCD中,∠D=90°,若AB=3,AD=,試求等鄰角四邊形ABCD的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是圓上任意一點,點D是AC中點,OD交AC于點E,BD交AC于點F,若BF=1.25DF,則tan∠ABD的值為( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形紙片ABCD,AD=4,AB=3,如果點E在邊BC上,將紙片沿AE折疊,使點B落在點F處,聯結FC,當△EFC是直角三角形時,那么BE的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=12,BC=5,將△ABC繞AB上的點O順時針旋轉90°,得到△A'B'C',連結BC'.若BC'∥A'B',則OB的值為( )
A. B. 5C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,P是BA延長線上一點,CG是⊙O的弦∠PCA=∠ABC,CG⊥AB,垂足為D
(1)求證:PC是⊙O的切線;
(2)求證:;
(3)過點A作AE∥PC交⊙O于點E,交CD于點F,連接BE,若sin∠P=,CF=5,求BE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】鄂州市電信部門積極支持鄂州國際航空大都市的建設,如圖,計劃修建一條連接B,C兩地的電纜,測量人員在山腳A測得B,C兩地的仰角分別為31°和45°,在B處測得C處的仰角為53°.已知C地比A地髙50m,則電纜BC至少需要多少米?(精確到1m,參考數據:sin31°≈,tan31°≈
,sin37°≈0.6,cos37°≈0.8)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com