【題目】數學課上,老師給出了如下問題:
(1)以下是小剛的解答過程,請你將解答過程補充完整:
解:如圖2,因為,
平分
,
所以______
______
(角平分線的定義).
因為,
所以______
.
(2)小戴說:“我覺得這道題有兩種情況,小剛考慮的是在
內部的情況,事實上,
還可能在
的內部”.根據小戴的想法,請你在圖1中畫出另一種情況對應的圖形,并直接寫出
的度數:______.
【答案】(1);60°;40° (2)80°
【解析】
(1)依據角平分線的定義,即可得到∠BOC=∠AOB=60°,再根據角的和差關系,即可得出∠BOD的度數.
(2)依據角平分線的定義,即可得到∠BOC=∠AOB=60°,再根據角的和差關系,即可得出∠BOD的度數.
(1)如圖2,∵∠AOB=120°,OC平分∠AOB.
∴∠BOC=∠AOB=60°.
∵∠COD=20°,
∴∠BOD=60°-20°=40°.
故答案為:;60°;40°;
(2)如圖1,
∵∠AOB=120°,OC平分∠AOB.
∴∠BOC=∠AOB=60°.
∵∠COD=20°,
∴∠BOD=60°+20°=80°.
故答案為:80°.
科目:初中數學 來源: 題型:
【題目】如圖,數軸上點A表示數a,點B表示數b,點C表示數c,b是最小的正整數,a、c滿足.AB表示點A、B之間的距離,且
.
(1)________,
________;
(2)若將數軸折疊,使得A點與C點重合,則點B與數________表示的點重合;
(3)點A、B、C在數軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和4個單位長度的速度向右運動,假設t秒鐘過后,若點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC.則________,
________.(用含t的代數式表示)
(4)在(3)的條件下,請問:的值是否隨著時間t的變化而改變?若變化,請說明理由,若不變,請求其值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用12 m長的一根鐵絲圍成長方形.
(1)如果長方形的面積為5.那么此時長方形的長是多少?寬是多少?如果面積是8
呢?
(2)能否圍成面積是10的長方形?為什么?
(3)能圍成的長方形的最大面積是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,校園內有一棵與地面垂直的樹,數學興趣小組兩次測量它在地面上的影子,第一次是陽光與地面成60°角時,第二次是陽光與地面成30°角時,兩次測量的影長相差8米,則樹高_____________米(結果保留根號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】李老伯想用24米長的舊木料,靠米長的圍墻造一個如圖所示的豬舍,它們的平面圖是一排大小相等的三個長方形,總面積為32平方米.
(1)求豬舍的長BC和寬AB各為多少米?
(2)題中圍墻的長度米對豬舍的長和寬是否有影響?怎樣影響?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知直線l為x+y=8,點P(x,y)在l上且x>0,y>0,點A的坐標為(6,0).
(1)設△OPA的面積為S,求S與x的函數關系式,并直接寫出x的取值范圍;
(2)當S=9時,求點P的坐標;
(3)在直線l上有一點M,使OM+MA的和最小,求點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】《九章算術》是我國古代數學的經典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設每枚黃金重x兩,每枚白銀重y兩,根據題意得( 。
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com