【題目】如圖,已知△ABC,按如下步驟作圖: ①分別以A,C為圓心,大于 AC的長為半徑畫弧,兩弧交于P,Q兩點;
②作直線PQ,分別交AB,AC于點E,D,連接CE;
③過C作CF∥AB交PQ于點F,連接AF.
(1)求證:△AED≌△CFD;
(2)求證:四邊形AECF是菱形.
【答案】
(1)證明:由作圖知:PQ為線段AC的垂直平分線,
∴AE=CE,AD=CD,
∵CF∥AB
∴∠EAC=∠FCA,∠CFD=∠AED,
在△AED與△CFD中,
,
∴△AED≌△CFD
(2)解:∵△AED≌△CFD,
∴AE=CF,
∵EF為線段AC的垂直平分線,
∴EC=EA,FC=FA,
∴EC=EA=FC=FA,
∴四邊形AECF為菱形
【解析】(1)由作圖知:PQ為線段AC的垂直平分線,從而得到AE=CE,AD=CD,然后根據CF∥AB得到∠EAC=∠FCA,∠CFD=∠AED,利用ASA證得兩三角形全等即可;(2)根據全等得到AE=CF,然后根據EF為線段AC的垂直平分線,得到EC=EA,FC=FA,從而得到EC=EA=FC=FA,利用四邊相等的四邊形是菱形判定四邊形AECF為菱形.
【考點精析】解答此題的關鍵在于理解菱形的判定方法的相關知識,掌握任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形.
科目:初中數學 來源: 題型:
【題目】已知|a+b|+|a-b|-2b=0,在數軸上給出關于a,b的四種位置關系如圖所示,則可能成立的有( )
A. 1種 B. 2種 C. 3種 D. 4種
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在長方形中,AB=4cm,BC=6cm,點
為
中點,如果點
在線段
上以每秒2cm的速度由點
向點
運動,同時,點
在線段
上由點
向點
運動.設點
運動時間為
秒,若某一時刻△BPE與△CQP全等,求此時
的值及點
的運動速度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】.. 計算題:
(1)8﹣(﹣10)﹣|﹣2|
(2)2 ﹣3
+(﹣3
)﹣(+5
)
(3)﹣24×(﹣ +
﹣
)
(4)﹣49 ×10(簡便運算)
(5)﹣ ÷(
﹣
+
)
(6)3×(﹣38 )﹣4×(﹣38
)﹣38
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一副直角三角尺疊放如圖 1 所示,現將 45°的三角尺ADE 固定不動,將含 30°的三角尺 ABC 繞頂點 A 順時針轉動(旋轉角不超過 180 度),使兩塊三角尺至少有一組邊互相平行.如圖 2:當∠BAD=15°時,BC∥DE.則∠BAD(0°<∠BAD<180°)其它所有可能符合條件的度數為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設三角形三個內角的度數分別為x,y,z,如果其中一個角的度數是另一個角的度數的2倍,那么我們稱數對(y,z)(y≤z)是x的和諧數對.例:當x=150°時,對應的和諧數對有一個,它為(10,20);當x=66時,對應的和諧數對有二個,它們為(33,81),(38,76).當對應的和諧數對(y,z)有三個時,此時x的取值范圍是____________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】現計劃把甲種貨物1240噸和乙種貨物880噸用一列貨車運往某地,已知這列貨車掛在A、B兩種不同規格的貨車廂共40節,使用A型車廂每節費用為6000元,使用B型車廂每節費用為8000元.
(1)設運送這批貨物的總費用為y萬元,這列貨車掛A型車廂x 節,試定出用車廂節數x表示總費用y的公式.
(2)如果每節A型車廂最多可裝甲種貨物35噸和乙種貨物15噸,每節B型車廂最多可裝甲種貨物25噸和乙種貨物35噸,裝貨時按此要求安排A、B兩種車廂的節數,那么共有哪幾種安排車廂的方案?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com