【題目】如圖,河的兩岸l1與l2相互平行,A,B是l1上的兩點,C,D是l2上的兩點,某人在點A處測得∠CAB=90°,∠DAB=30°,再沿AB方向前進20米到達點E(點E在線段AB上),測得∠DEB=60°,求C,D兩點間的距離.
【答案】解:過點D作l1的垂線,垂足為F,
∵∠DEB=60°,∠DAB=30°,
∴∠ADE=∠DEB﹣∠DAB=30°,
∴△ADE為等腰三角形,
∴DE=AE=20,
在Rt△DEF中,EF=DEcos60°=20× =10,
∵DF⊥AF,
∴∠DFB=90°,
∴AC∥DF,
由已知l1∥l2,
∴CD∥AF,
∴四邊形ACDF為矩形,CD=AF=AE+EF=30,
答:C、D兩點間的距離為30m.
【解析】利用等腰三角形的判定與性質求出DE,再由cos60°求出EF,進而求出AF.
【考點精析】根據題目的已知條件,利用兩點間的距離的相關知識可以得到問題的答案,需要掌握同軸兩點求距離,大減小數就為之.與軸等距兩個點,間距求法亦如此.平面任意兩個點,橫縱標差先求值.差方相加開平方,距離公式要牢記.
科目:初中數學 來源: 題型:
【題目】疫情期間,學校為了學生在班級將生活垃圾和廢棄口罩分類丟棄,準備購買A,B兩種型號的垃圾箱,通過市場調研得知:購買3個A型垃圾箱和2個B型垃圾箱共需270元,購買2個A型垃圾箱比購買3個B型垃圾箱少用80元.求每個A型垃圾箱和B型垃圾箱各多少元?學校購買A型垃圾桶8個,B型垃圾桶16個,共花費多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,正方形A1B1C1O、A2B2C2B1、A3B3C3B2 , …,按圖所示的方式放置.點A1、A2、A3 , …和點B1、B2、B3 , …分別在直線y=kx+b和x軸上.已知C1(1,﹣1),C2( ,
),則點A3的坐標是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,EF分別是 BC,CD上的點,且∠EAF=60°,探究圖中線段BE,EF,FD之間的數量關系.
小王同學探究此問題的方法是延長FD到點G,使DG=BE,連結AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結論,他的結論應是 ;
探索延伸:
(2)如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,E,F分別是BC,CD上的點,且∠EAF=∠BAD,上述結論是否仍然成立,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點E為AD的中點,延長CE交BA的延長線于點F.
(1)求證:AB=AF;
(2)若BC=2AB,∠BCD=110°,求∠ABE的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,,
,且
滿足方程組
,連接
,
.
(1)求的面積;
(2)動點從點
出發,以每秒
個單位長度的速度沿
軸向左運動,連接
,設點
運動的時間為
秒,
的面積為
, 試用含
的式子表示
;
(3)在的條件下,點
,點
是
上一點,連接
,點
在
延長線上,且
,連接
, 當點
在
軸負半軸上,
,
, 四邊形
的面積與
的面積比為
時,求此時
值和點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市在招商引資期間,把已經破產的油泵廠出租給外地某投資商,該投資商為了減少固定資產投資,將原來400平方米的正方形場地建成300平方米的長方形場地,并且長、寬的比為5:3,并且把原來的正方形鐵柵欄圍墻全部利用,圍成新場地的長方形圍墻,請問這些鐵柵欄是否夠用?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了進一步改進本校七年級數學教學,提高學生學習數學的興趣,校教務處在七年級所有班級中,每班隨機抽取了6名學生,并對他們的數學學習情況進行了問卷調查.我們從所調查的題目中,特別把學生對數學學習喜歡程度的回答(喜歡程度分為:“A﹣非常喜歡”、“B﹣比較喜歡”、“C﹣不太喜歡”、“D﹣很不喜歡”,針對這個題目,問卷時要求每位被調查的學生必須從中選一項且只能選一項)結果進行了統計,現將統計結果繪制成如下兩幅不完整的統計圖.
請你根據以上提供的信息,解答下列問題:
(1)補全上面的條形統計圖和扇形統計圖;
(2)所抽取學生對數學學習喜歡程度的眾數是 ;
(3)若該校七年級共有960名學生,請你估算該年級學生中對數學學習“不太喜歡”的有多少人?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com