【題目】二次函數y=ax2+bx+c(a≠0)的大致圖象如圖所示,頂點坐標為(﹣2,﹣9a),下列結論:①4a+2b+c>0;②5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有兩個根x1和x2,且x1<x2,則﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四個根,則這四個根的和為﹣4.其中正確的結論有( 。
A. 1個 B. 2個 C. 3個 D. 4個
【答案】B
【解析】根據拋物線的頂點坐標(﹣2,﹣9a),根據頂點坐標公式可求得b=4a,c=-5a,從而可得拋物線的解析式為y=ax2+4ax﹣5a,然后根據二次函數的性質一一判斷即可.
∴a>0,
∵拋物線的頂點坐標(﹣2,﹣9a),
∴﹣=﹣2,
=﹣9a,
∴b=4a,c=-5a,
∴拋物線的解析式為y=ax2+4ax﹣5a,
∴4a+2b+c=4a+8a﹣5a=7a>0,故①正確,
5a﹣b+c=5a﹣4a﹣5a=﹣4a<0,故②錯誤,
∵拋物線y=ax2+4ax﹣5a交x軸于(﹣5,0),(1,0),
∴若方程a(x+5)(x﹣1)=﹣1有兩個根x1和x2,且x1<x2,則﹣5<x1<x2<1,正確,故③正確,
若方程|ax2+bx+c|=1有四個根,則這四個根的和為﹣8,故④錯誤,
故選B.
科目:初中數學 來源: 題型:
【題目】某校為了解學生每天參加戶外活動的情況,隨機抽查了100名學生每天參加戶外活動的時間情況,并將抽查結果繪制成如圖所示的扇形統計圖.
請你根據圖中提供的信息解答下列問題:
(1)請直接寫出圖中的值,并求出本次抽查中學生每天參加戶外活動時間的中位數;
(2)求本次抽查中學生每天參加戶外活動的平均時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以△ABC的邊AB為直徑畫⊙O,交AC于點D,半徑OE∥BD,連接BE,DE,BD,設BE交AC于點F,若∠DEB=∠DBC.
(1)求證:BC是⊙O的切線;
(2)若BF=BC=2,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,可以自由轉動的轉盤被它的兩條直徑分成了四個分別標有數字的扇形區域,其中標有數字“1”的扇形圓心角為120°.轉動轉盤,待轉盤自動停止后,指針指向一個扇形的內部,則該扇形內的數字即為轉出的數字,此時,稱為轉動轉盤一次(若指針指向兩個扇形的交線,則不計轉動的次數,重新轉動轉盤,直到指針指向一個扇形的內部為止)
(1)轉動轉盤一次,求轉出的數字是-2的概率;
(2)轉動轉盤兩次,用樹狀圖或列表法求這兩次分別轉出的數字之積為正數的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小聰和小明沿同一條路同時從學校出發到某超市購物,學校與超市的路程是4千米.小聰騎自行車,小明步行,當小聰從原路回到學校時,小明剛好到達超市.圖中折線O﹣A﹣B﹣C和線段OD分別表示兩人離學校的路程s(千米)與所經過的時間t(分鐘)之間的函數關系,請根據圖象回答下列問題:
(1)小聰在超市購物的時間為 分鐘,小聰返回學校的速度為 千米/分鐘;
(2)請你求出小明離開學校的路程s(千米)與所經過的時間t(分鐘)之間的函數關系式;
(3)當小聰與小明迎面相遇時,他們離學校的路程是多少千米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖.已知A、B兩點的坐標分別為A(0,),B(2,0).直線AB與反比例函數
的圖象交于點C和點D(
1,a).
(1)求直線AB和反比例函數的解析式.
(2)求∠ACO的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系 中,函數
的圖象與直線
交于點A(3,m).
(1)求k、m的值;
(2)已知點P(n,n)(n>0),過點P作平行于軸的直線,交直線y=x-2于點M,過點P作平行于y軸的直線,交函數
的圖象于點N.
①當n=1時,判斷線段PM與PN的數量關系,并說明理由;
②若PN≥PM,結合函數的圖象,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】弦AB,CD是⊙O的兩條平行弦,⊙O的半徑為5,AB=8,CD=6,則AB,CD之間的距離為( )
A. 7 B. 1 C. 4或3 D. 7或1
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com