【題目】已知:關于x的一元二次方程mx2﹣3(m﹣1)x+2m﹣3=0(m>3).
(1)求證:方程總有兩個不相等的實數根;
(2)設方程的兩個實數根分別為x1 , x2(用含m的代數式表示);
①求方程的兩個實數根x1 , x2(用含m的代數式表示);
②若mx1<8﹣4x2 , 直接寫出m的取值范圍.
【答案】
(1)證明:∵mx2﹣3(m﹣1)x+2m﹣3=0(m>3)是關于x的一元二次方程,
∴△=[(﹣3(m﹣1)]2﹣4m(2m﹣3)=m2﹣6m+9=(m﹣3)2,
∵m>3,
∴(m﹣3)2>0,即△>0,
∴方程總有兩個不相等的實數根
(2)①由求根公式得x= ,
∴x=1,或x= ,
∵m>3,
∴ >3,
當x1<x2,
∴x1=1,x2=2﹣ ;
當x1>x2,
這種情況不存在;
∴x1=1,x2=2﹣ ;
②∵mx1<8﹣4x2,
∴m<8﹣4(2﹣ ),
解得:3<m<2 .
【解析】(1)由于m>3,此方程為關于x的一元二次方程,再計算出判別式△=(m﹣3)2 , 然后根據判別式的意義即可得到結論;(2)②由求根公式得到x=1,或x= ,即可得到結論;②根據mx1<8﹣4x2 , 即可得到 結果.
【考點精析】根據題目的已知條件,利用求根公式和根與系數的關系的相關知識可以得到問題的答案,需要掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當△>0時,一元二次方程有2個不相等的實數根2、當△=0時,一元二次方程有2個相同的實數根3、當△<0時,一元二次方程沒有實數根;一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數a、b、c而定;兩根之和等于方程的一次項系數除以二次項系數所得的商的相反數;兩根之積等于常數項除以二次項系數所得的商.
科目:初中數學 來源: 題型:
【題目】直線MN與直線PQ垂直相交于O,點A在直線PQ上運動,點B在直線MN上運動.
(1)如圖1,已知AE、BE分別是∠BAO和∠ABO角的平分線,點A、B在運動的過程中,∠AEB的大小是否會發生變化?若發生變化,請說明變化的情況;若不發生變化,試求出∠AEB的大。
(2)如圖2,已知AB不平行CD,AD、BC分別是∠BAP和∠ABM的角平分線,又DE、CE分別是∠ADC和∠BCD的角平分線,點A、B在運動的過程中,∠CED的大小是否會發生變化?若發生變化,請說明理由;若不發生變化,試求出其值.
(3)如圖3,延長BA至G,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及延長線相交于E、F,在△AEF中,如果有一個角是另一個角的3倍,試求∠ABO的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】仔細閱讀下面倒題.解答問題:
例題:已知二次三項式,x2-4x+m分解因式后有一個因式是(x+3).求另一個因式以及m的值.
解:方法一:設另一個因式為(x+n),得x2-4x+m=(x+3)(x+n).則x2-4x+m=x2+(n+3)x+3n,∴ ,解得
,∴另一個因式為(x-7),m的值為-21.
方法二:設x2-4x+m=k(x+3)(k≠0),當x=-3時,左邊-9+12+m,右邊=0,∴9+12+m=0,解得m=-21,將x2-4x-21分解因式,得另一個因式為(x-7).
仿照以上方法一或方法二解答:已知二次三項式8x2-14x-a分解因式后有一個因式是(2x-3).求另一個因式以及a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了讓同學們了解自己的體育水平,初二1班的體育康老師對全班45名學生進行了一次體育模擬測試(得分均為整數)成績滿分為10分,成績達到9分以上(包含9分)為優秀,成績達到6分以上(包含6分)為合格,1班的體育委員根據這次測試成績,制作了統計圖和分析表如下:
初二1班體育模擬測試成績分析表
平均分 | 方差 | 中位數 | 眾數 | 合格率 | 優秀率 | |
男生 | 2 | 8 | 7 | 95% | 40% | |
女生 | 7.92 | 1.99 | 8 | 96% | 36% |
根據以上信息,解答下列問題:
(1)在這次測試中,該班女生得10分的人數為4人,則這個班共有女生人;
(2)補全初二1班男生體育模擬測試成績統計圖,并把相應的數據標注在統計圖上;
(3)補全初二1班體育模擬測試成績分析表;
(4)你認為在這次體育測試中,1班的男生隊、女生隊哪個表現更突出一些?并寫出一條支持你的看法的理由;
(5)體育康老師說,從整體看,1班的體育成績在合格率方面基本達標,但在優秀率方面還不夠理想,因此他希望全班同學繼續加強體育鍛煉,爭取在期末考試中,全班的優秀率達到60%,若男生優秀人數再增加6人,則女生優秀人數再增加多少人才能完成康老師提出的目標?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程3x2+4x-5=0,下列說法不正確的是( 。.
A.方程有兩個相等的實數根
B.方程有兩個不相等的實數根
C.沒有實數根
D.無法確定
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com