精英家教網 > 初中數學 > 題目詳情

【題目】如圖,AB12,C是線段AB上一點,分別以AC、CB為邊在A的同側作等邊△ACP和等邊△CBQ,連接PQ,則PQ的最小值是( 。

A. 3B. 4C. 5D. 6

【答案】D

【解析】

分別延長APBQ交于點D,易證四邊形CPDQ為平行四邊形,得出PD+DQPC+CQAC+BC12,作△ABD的中位線MN,則MDDNMNAB,運用中位線的性質和等邊三角形的性質求出MDDNMNAB,進而求得MD+DNPD+DQ,得出PMQN,作PEMN,QFMN,則PEQF,然后證得△PME≌△QNF,從而證得MNEF,根據平行線間的距離得出PQEF,從而求得PQ的最小值.

解:如圖,分別延長AP、BQ交于點D,

∵∠AQCB60°

ADCQ,

∵∠BCPCA60°

BDPC,

四邊形CPDQ為平行四邊形,

PDCQPCDQ,

PD+DQPC+CQAC+BC12,

ABD的中位線MN,則MDDNMNAB,

MD+DNAB12

MD+DNPD+DQ,

PMQN

PEMN,QFMN

PEQF,

∴∠PEMQFN90°,且PMEQNF60°PMQN

∴△PME≌△QNFAAS),

EMFN

MNEF,

PQEF,

C是線段AB的中點時,PQ的值最小,最小值為AB6

故選:D

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖山坡上有一根旗桿AB,旗桿底部B點到山腳C點的距離BC米,斜坡BC的坡度i=1 .小明在山腳的平地F處測量旗桿的高,點C到測角儀EF的水平距離CF=1米,從E處測得旗桿頂部A的仰角為45°,旗桿底部B的仰角為20°

1)求坡角∠BCD;

2)求旗桿AB的高度.

(參考數值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如果三角形的兩個內角αβ滿足2α+β=90°,那么我們稱這樣的三角形為準互余三角形”.

(1)若ABC準互余三角形”,C>90°,A=60°,則∠B=   °;

(2)如圖①,在RtABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明ABD準互余三角形.試問在邊BC上是否存在點E(異于點D),使得ABE也是準互余三角形?若存在,請求出BE的長;若不存在,請說明理由.

(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BDCD,ABD=2BCD,且ABC準互余三角形,求對角線AC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】環保局對某企業排污情況進行檢測,結果顯示:所排污水中硫化物的濃度超標,即硫化物的濃度超過最高允許的1.0 mg/L.環保局要求該企業立即整改,在15天以內(含15天)排污達標.整改過程中,所排污水中硫化物的濃度y(mg/L)與時間x(天)的變化規律如圖所示,其中線段AB表示前3天的變化規律,其中第3天時硫化物的濃度降為4 mg/L.從第3天起所排污水中硫化物的濃度y與時間x滿足下面表格中的關系:

時間x(天)

3

4

5

6

8

……

硫化物的濃y(mg/L)

4

3

2.4

2

1.5

(1)求整改過程中當0≤x<3時,硫化物的濃度y與時間x的函數表達式;

(2)求整改過程中當x≥3時,硫化物的濃度y與時間x的函數表達式;

(3)該企業所排污水中硫化物的濃度,能否在15天以內不超過最高允許的1.0 mg/L?為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD是⊙O的一條弦,且CDAB于點E,連接AD,BCCO

1)當∠BCO25°時,求∠A的度數;

2)若CD4BE4,求⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)如圖1,在五邊形ABCDE中,ABAE,∠B=∠BAE=∠AED90°,∠CAD45°,試猜想BC,CD,DE之間的數量關系.小明經過仔細思考,得到如下解題思路:

將△ABC繞點A逆時針旋轉90°至△AEF,由∠B=∠AED90°,得∠DEF180°,即點D,E,F三點共線,易證△ACD   ,故BC,CD,DE之間的數量關系是   ;

2)如圖2,在四邊形ABCD中,ABAD,∠ABC+D180°,點E,F分別在邊CB,DC的延長線上,∠EAFBAD,連接EF,試猜想EF,BE,DF之間的數量關系,并給出證明.

3)如圖3,在△ABC中,∠BAC90°,ABAC,點DE均在邊BC上,且∠DAE45°,若BD2,CE3,則DE的長為   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】問題情填,

在綜合與實踐課上,老師讓同學們以矩形紙片的剪拼為主題開展數學活動,如圖1,將矩形紙片ABCD沿對角線AC剪開,得到△ABC和△ACD、并且量得AB2cm,AC4cm.

操作發現:

(1)將圖1中的△ACD以點A為旋轉中心,按逆時針方向旋轉∠α,使∠α=∠BAC,得到加圖2所示的△AC′D,過點CAC′的平行線,與DC′的延長線交于點E,則四邊形ACEC'的形狀是_________

(2)創新小組將圖1中的△ACD以點A為旋轉中心,按逆時針方向旋轉,使B,AD三點在同一條直線上,得到如圖3所示的△AC′D,連接CC′,取CC'的中點F,連精AF并延長到點G,使FGAF,連接CGC′G,得到四邊形ACGC′,發現它是正方形,請你證明這個結論.

實踐探究:

(3)縝密小組在創新小組發現結論的基礎上,進行如下操作:將△ABC沿著BD方向平移,使點B與點A重合,此時A點平移至A′點,A′CBC′相交于點H.如圖4所示,連接CC',試求CH的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在某水果店一次性購買A種水果的單價y(元)與購買量x(千克)的函數關系如圖.

1)下列關于三段函數圖象的說法不正確的是( 。

A、第①段函數圖象表示數量不多于5千克時,單價為10元.

B、第③段函數圖象表示數量不少于11千克時,單價為8.8元.

C、第②段函數圖象可知:當一次性數量多于5千克但不多于11千克時,每多買1千克,單價就降低1.2元.

2)求圖中第②段函數圖象的解析式,并指出x的取值范圍.

3)某天老李計劃用90元去該店買A種水果,問老李一次性(或最多)能買回多少千克A種水果?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】不透明的口袋里裝有紅、黃、藍三種顏色的小球(除顏色外其余都相同),其中紅球有2個,藍球有1個,現從中任意摸出一個是紅球的概率為

(1)求袋中黃球的個數;

(2)第一次摸出一個球(不放回),第二次再摸一個小球,請用畫樹狀圖或列表法求兩次摸到都是紅球的概率;

(3)若規定摸到紅球得5分,摸到黃球得3分,摸到藍球得1分,小明共摸6次小球(每次摸1個球,摸后放回)得20分,問小明有哪幾種摸法?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视