【題目】問題情填,
在綜合與實踐課上,老師讓同學們以“矩形紙片的剪拼”為主題開展數學活動,如圖1,將矩形紙片ABCD沿對角線AC剪開,得到△ABC和△ACD、并且量得AB=2cm,AC=4cm.
操作發現:
(1)將圖1中的△ACD以點A為旋轉中心,按逆時針方向旋轉∠α,使∠α=∠BAC,得到加圖2所示的△AC′D,過點C作AC′的平行線,與DC′的延長線交于點E,則四邊形ACEC'的形狀是_________;
(2)創新小組將圖1中的△ACD以點A為旋轉中心,按逆時針方向旋轉,使B,A,D三點在同一條直線上,得到如圖3所示的△AC′D,連接CC′,取CC'的中點F,連精AF并延長到點G,使FG=AF,連接CG,C′G,得到四邊形ACGC′,發現它是正方形,請你證明這個結論.
實踐探究:
(3)縝密小組在創新小組發現結論的基礎上,進行如下操作:將△ABC沿著BD方向平移,使點B與點A重合,此時A點平移至A′點,A′C與BC′相交于點H.如圖4所示,連接CC',試求CH的長度.
【答案】(1)菱形;(2)見解析;(3)
【解析】
(1)在圖一中,利用矩形的性質和平行線的性質可得出∠ACD=∠BAC,在圖2中,由旋轉知AC=AC',∠AC'D=∠ACD,可得∠CAC'=∠AC'D,可得AC∥C'E,證得四邊形ACEC'是平行四邊形,又AC=AC',證得ACEC'是菱形
(2)在圖1和圖3中,根據矩形的性質和旋轉的性質證明∠BAC+∠DAC'=90°,根據中點可得CF=C'F,AF=FG,可得到四邊形ACGC'是平行四邊形,又因為AG⊥CC',證得ACGC'是菱形,由∠CAC'=90°,故證得菱形ACGC'是正方形;
(3)在Rt△ABC中,AB=2,AC=4,可求得sin∠ACB=,由(2)結合平移知,∠CHC’=90°,再利用解直角三角形求出BH=BC·sin30°=
,進而求得C’H=BC’-BC=4-
,CH=AC-AH=4-1=3,最后在Rt△CHC’中,利用銳角三角函數的定義求得tan∠C’CH=
=
.
解:(1)在如圖1中,
∵AC是矩形ABCD的對角線,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠BAC,
在如圖2中,由旋轉知,AC'=AC,∠AC'D=∠ACD,
∴∠BAC=∠AC'D,
∵∠CAC'=∠BAC,
∴∠CAC'=∠AC'D,
∴AC∥C'E,
∵AC'∥CE,
∴四邊形ACEC'是平行四邊形,
∵AC=AC',
∴ACEC'是菱形,
故答案為:菱形;
(2)在圖1中,∵四邊形ABCD是矩形,
∴AB∥CD,
∴∠CAD=∠ACB,∠B=90°,
∴∠BAC+∠ACB=90°
在圖3中,由旋轉知,∠DAC'=∠DAC,
∴∠ACB=∠DAC',
∴∠BAC+∠DAC'=90°,
∵點D,A,B在同一條直線上,
∴∠CAC'=90°,
由旋轉知,AC=AC',
∵點F是CC'的中點,
∴AG⊥CC',CF=C'F,
∵AF=FG,
∴四邊形ACGC'是平行四邊形,
∵AG⊥CC',
∴ACGC'是菱形,
∵∠CAC'=90°,
∴菱形ACGC'是正方形;
(3)在Rt△ABC中,AB=2,AC=4
∴BC’=AC=4,BD=BC=2,sin∠ACB=
∴∠ACB=30°
由(2)結合平移知,∠CHC’=90°
在Rt△BCH中,∠ACB=30°
∴BH=BC·sin30°=
∴C’H=BC’-BC=4-
在Rt△ABH中,AH=AB=1
∴CH=AC-AH=4-1=3
在Rt△CHC’中,tan∠C’CH==
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線y=2x+2與x軸,y軸分別交于點A,B,拋物線y=ax2+bx-經過點A和點C(4,0).
(1)求該拋物線的表達式.
(2)連接CB,并延長CB至點D,使DB=CB,請判斷點D是否在該拋物線上,并說明理由.
(3)在(2)的條件下,過點C作x軸的垂線EC與直線y=2x+2交于點E,以DE為直徑畫⊙M,
①求圓心M的坐標;②若直線AP與⊙M相切,P為切點,直接寫出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,過矩形ABCD的對角線AC的中點O作EF⊥AC,交BC邊于點E,交AD邊于點F,分別連接AE、CF,若AB=2,∠DCF=30°,則EF的長為( 。
A. 4B. 6C. D. 2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB=12,C是線段AB上一點,分別以AC、CB為邊在A的同側作等邊△ACP和等邊△CBQ,連接PQ,則PQ的最小值是( 。
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面內由極點、極軸和極徑組成的坐標系叫做極坐標系.如圖,在平面上取定一點O稱為極點;從點O出發引一條射線Ox稱為極軸;線段OP的長度稱為極徑.點P的極坐標就可以用線段OP的長度以及從Ox轉動到OP的角度(規定逆時針方向轉動角度為正)來確定,即P(3,60°)或P(3,﹣300°)或P(3,420°)等,則點P關于點O成中心對稱的點Q的極坐標表示不正確的是( )
A. Q(3,240°) B. Q(3,﹣120°) C. Q(3,600°) D. Q(3,﹣500°)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在我市迎接奧運圣火的活動中,某校教學樓上懸掛著宣傳條幅DC,小麗同學在點A處,測得條幅頂端D的仰角為30°,再向條幅方向前進10米后,又在點B處測得條幅頂端D的仰角為45°,已知測點A.B和C離地面高度都為1.44米,求條幅頂端D點距離地面的高度
(計算結果精確到0.1米,參考數據≈1.414,
≈1.732)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形紙片ABCD,AD=4,AB=3,如果點E在邊BC上,將紙片沿AE折疊,使點B落在點F處,聯結FC,當△EFC是直角三角形時,那么BE的長為( )
A. 1.5B. 3
C. 1.5或3D. 有兩種情況以上
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長均為1,線段AB的端點均在小正方形的頂點上.
(1)在圖中畫出以線段AB為一邊的矩形ABCD(不是正方形),且點C和點D均在小正方形的頂點上;
(2)在圖中畫出以線段AB為一腰,底邊長為的等腰三角形ABE,點E在小正方形的頂點,則CE= ;
(3)F是邊AD上一動點,則CF+EF的最小值是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com