【題目】綜合題
(1)如圖(1),正方形AEGH的頂點E、H在正方形ABCD的邊上,直接寫出HD:GC:EB的結果(不必寫計算過程);
(2)將圖(1)中的正方形AEGH繞點A旋轉一定角度,如圖(2),求HD:GC:EB;
(3)把圖(2)中的正方形都換成矩形,如圖(3),且已知DA:AB=HA:AE=m:n,此時HD:GC:EB的值與(2)小題的結果相比有變化嗎?如果有變化,直接寫出變化后的結果(不必寫計算過程).
【答案】
(1)解:連接AG,
∵正方形AEGH的頂點E、H在正方形ABCD的邊上,
∴∠GAE=∠CAB=45°,AE=AH,AB=AD,
∴A,G,C共線,AB﹣AE=AD﹣AH,
∴HD=BE,
∵AG= =
AE,AC=
=
AB,
∴GC=AC﹣AG= AB﹣
AE=
(AB﹣AE)=
BE,
∴HD:GC:EB=1: :1;
(2)解:連接AG、AC,
∵△ADC和△AHG都是等腰直角三角形,
∴AD:AC=AH:AG=1: ,∠DAC=∠HAG=45°,
∴∠DAH=∠CAG,
∴△DAH∽△CAG,
∴HD:GC=AD:AC=1: ,
∵∠DAB=∠HAE=90°,
∴∠DAH=∠BAE,
在△DAH和△BAE中,
,
∴△DAH≌△BAE(SAS),
∴HD=EB,
∴HD:GC:EB=1: :1;
(3)解:有變化,
連接AG、AC,
DA:AB=HA:AE=m:n,
∵∠ADC=∠AHG=90°,
∴△ADC∽△AHG,
∴AD:AC=AH:AG=m: ,∠DAC=∠HAG,
∴∠DAH=∠CAG,
∴△DAH∽△CAG,
∴HD:GC=AD:AC=m: ,
∵∠DAB=∠HAE=90°,
∴∠DAH=∠BAE,
∵DA:AB=HA:AE=m:n,
∴△ADH∽△ABE,
∴DH:BE=AD:AB=m:n,
∴HD:GC:EB=m: :n.
【解析】(1)首先連接AG,由正方形AEGH的頂點E、H在正方形ABCD的邊上,易證得∠GAE=∠CAB=45°,AE=AH,AB=AD,即A,G,C共線,繼而可得HD=BE,GC=BE,即可求得HD:GC:EB的值;
(2)連接AG、AC,由△ADC和△AHG都是等腰直角三角形,易證得△DAH∽△CAG與△DAH≌△BAE,利用相似三角形的對應邊成比例與全等三角形的性質,即可求得HD:GC:EB的值;
(3)連接AG、AC, 由DA:AB=HA:AE=m:n,易證得△ADC∽△AHG,△DAH∽△CAG,△ADH∽△ABE,利用相似三角形的對應邊成比例與勾股定理即可求得HD:GC:EB的值
【考點精析】關于本題考查的等腰直角三角形和勾股定理的概念,需要了解等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能得出正確答案.
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,Rt△AOB的兩條直角邊OA、OB分別在x軸和y軸上,OA=3,OB=4.把△AOB繞點A順時針旋轉120°,得到△ADC.邊OB上的一點M旋轉后的對應點為M′,當AM′+DM取得最小值時,點M的坐標為( )
A.(0, )
B.(0, )
C.(0, )
D.(0,3)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①是一個長為2m.寬為2n的長方形,沿圖中虛線用剪刀均勻分成四塊小長方形,然后按圖②形狀拼成一個正方形.
(1)你認為圖②中的陰影部分的正方形的邊長等于________?
(2)請用兩種不同的方法求圖②中陰影部分的面積.(不用化簡)
方法1:___________;方法2:___________.
(3)由問題(2)你能寫出三個代數式:,
,mn之間的一個等量關系.
答:______________.
(4)根據(3)題中的等量關系和完全平方公式,解決如下問題:
①已知:m+n=5,mn=-3,求:(m﹣n)2的值;
②已知m-n=5,,求mn的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知中,
,
,
,D是AB邊的中點,E是AC邊上一點,聯結DE,過點D作
交BC邊于點F,聯結EF.
(1)如圖1,當時,求EF的長;
(2)如圖2,當點E在AC邊上移動時, 的正切值是否會發生變化,如果變化請說出變化情況;如果保持不變,請求出
的正切值;
(3)如圖3,聯結CD交EF于點Q,當是等腰三角形時,請直接寫出BF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某開發公司生產的 960 件新產品需要精加工后,才能投放市場,現甲、乙兩個工廠都想加工這批產品,已知甲工廠單獨加工完成這批產品比乙工廠單獨加工完成這批產品多用 20 天,而甲工廠每天加工的數量是乙工廠每天加工的數量的,公司需付甲工廠加工費用為每天 80 元,乙工廠加工費用為每天 120 元.
(1)甲、乙兩個工廠每天各能加工多少件新產品?
(2)公司制定產品加工方案如下:可以由每個廠家單獨完成,也可以由兩個廠家合作完成.在加工過程中,公司派一名工程師每天到廠進行技術指導,并負擔每天 15 元的午餐補助費, 請你幫公司選擇一種既省時又省錢的加工方案,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com