【題目】如圖,在△ABC中,CD⊥AB于點D,AC=4,BC=3,DB=,
(1)求CD、AD的長
(2)判斷△ABC的形狀,并說明理由。
【答案】(1)、CD=,AD=
;(2)、直角三角形,理由見解析
【解析】
試題分析:(1)、根據CD⊥AB,BC=3,BD=得出△CDB和△ADC為直角三角形,然后根據直角三角形的勾股定理分別求出CD和AD的長度;(2)、根據題意得出AC,BC和AB的長度,然后根據勾股定理的逆定理得出三角形為直角三角形.
試題解析:(1)、∵CD⊥AB,BC=3,BD= ∴∠CDB=∠CDA=90° ∴在Rt△CDB中,由勾股定理可得:
CD=
在Rt△ADC中,AC=4,CD=,由勾股定理可得:AD=
(2)、△ABC為直角三角形
∵在△ABC中,AC=4,BC=3,AB=AD+BD=+
=5 ∴
∴由勾股定理的逆定理可得:△ABC為直角三角形.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC 中,CD⊥AB,EF⊥AB,垂足分別為D、F.
(1)若∠1=∠2,試說明DG∥BC.
(2)若CD 平分∠ACB,∠A=60°,求∠B的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列命題:
有一個角為
的等腰三角形是等邊三角形;
等腰直角三角形一定是軸對稱圖形;
有一條直角邊對應相等的兩個直角三角形全等;
到線段兩端距離相等的點在這條線段的垂直平分線上.
正確的個數有
A. 4個B. 3個C. 2個D. 1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料: 小明在學習二次根式后,發現一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進行了以下探索:
設(其中
均為整數),則有
.
∴.這樣小明就找到了一種把部分
的式子化為平方式的方法.
請你仿照小明的方法探索并解決下列問題:
當均為正整數時,若
,用含m、n的式子分別表示
,得
= ,
= ;
(2)利用所探索的結論,找一組正整數,填空: + =( +
)2;
(3)若,且
均為正整數,求
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】春節期間,重百超市推出了甲、乙、丙、丁四種禮品套餐組合:甲套餐每袋裝有15個A禮盒,10個B禮盒,10個C禮盒;乙套餐每袋裝有5個A禮盒,7個B禮盒,6個C禮盒;丙套餐每袋裝有7個A禮盒,8個B禮盒,9個C禮盒;丁套餐每袋裝有3個A禮盒,4個B禮盒,4個C禮盒,若一個甲套餐售價1800元,利潤率為,一個乙和一個丙套餐一共成本和為1830元,且一個A禮盒的利潤率為
,問一個丁套餐的利潤率為______
利潤率
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c的圖象如圖所示,則一次函數y=bx+b2﹣4ac與反比例函數y= 在同一坐標系內的圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下面說法正確的個數有( )
(1)二元一次方程組的兩個方程的所有解,叫做二元一次方程組的解;
(2)如果,則
;
(3)三角形的外角等于與它不相鄰的兩個內角的和;
(4)多邊形內角和等于;
(5)一組數據1,2,3,4,5的眾數是0
A.0個B.1個C.2個D.3個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com