精英家教網 > 初中數學 > 題目詳情

【題目】甲、乙兩人參加學校組織的理化實驗操作測試,近期的5次測試成績如圖所示.

(1)請你根據圖中的數據填寫表格;

姓名

平均數

眾數

方差

8

8

2.8

(2)從平均數和方差相結合看,誰的成績好些?從發展趨勢來看,誰的成績好些?

【答案】(1)8 0.4 8;(2)從平均數和方差相結合看,甲的成績好些;從發展趨勢來看,乙的成績好些.

【解析】(1)直接結合圖中數據結合平均數以及方差求法分別得出答案;
(2)利用方差反映數據穩定性平均數是反映整體的平均水平進而分析得出答案.

(1)如圖所示:乙的平均數為:

S2=

=0.4;

由圖中數據可得:甲組數據的眾數為8,

姓名

平均數

眾數

方差

8

8

0.4

8

8

2.8

(2)從平均數和方差相結合看,甲的成績好些;

從發展趨勢來看,乙的成績好些.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖17張長為a,寬為bab)的小長方形紙片,按圖2的方式不重疊地放在矩形ABCD內,未被覆蓋的部分(兩個矩形)用陰影表示.設左上角與右下角的陰影部分的面積的差為S,當BC的長度變化時,按照同樣的放置方式,S始終保持不變,則a,b滿足( )

A. a=b B. a=2b

C. a=3b D. a=4b

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】從邊長為a的大正方形紙板中挖去一個邊長為b的小正方形后,將其裁成四個相同的等腰梯形(如圖1),然后拼成一個平行四邊形(如圖2)。那么通過計算兩個圖形的陰影部分的面積,可以驗證成立的公式是( )

Aa2b2=(ab)2

B(a+b)2="a+2ab+b"

C(ab)2=a22ab+b2

Da2b2=(ab)(a+b)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,將一張正方形紙片剪成四個大小一樣的小正方形,然后將其中一個小正方形再按同樣的方法剪成四個小正方形,再將其中的一個小正方形剪成四個小正方形,如此循環進行下去。

(1)完成下表:

剪的次數

1

2

3

4

5

...

n

小正方形的個數

4

7

10

...

(2) .(用含n的代數式表示)

(3)按上述方法,能否得到2018個小正方形?如果能,請求出n;如不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】根據題意解答

(1)如圖1,已知E是矩形ABCD的邊AB上一點,EF⊥DE交BC于點F,證明:△ADE∽△BFE.
(2)這個相似的基本圖形像字母K,可以稱為“K”型相似,但更因為圖形的結構特征是一條線上有3個垂直關系,也常被稱為“一線三垂直”,那普通的3個等角又會怎樣呢?
變式一如圖2,已知等邊三角形ABC,點D、E分別為BC,AC上的點,∠ADE=60°.
①圖中有相似三角形嗎?請說明理由.
②如圖3,若將∠ADE在△ABC的內部(∠ADE兩邊不與BC重合),繞點D逆時針旋轉一定的角度,還有相似三角形嗎?
(3)變式二如圖4,隱藏變式1圖形中的線段AE,在得到的新圖形中.
①如果∠B=∠C=∠ADE=50°,圖中有相似三角形嗎?請說明理由.
②如圖5,若∠B=∠C=∠ADE=∠a,∠a為任意角,還有相似三角形嗎?
(4)交式三已知,相鄰兩條平形直線間的距離相等,若等腰直角△ABC的三個頂點分別在這三條平行直線上,則cosa的值是(直接寫出結果).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】設邊長為3的正方形的對角線長為a.下列關于a的四種說法: ①a是無理數;
②a可以用數軸上的一個點來表示;
③3<a<4;
④a是18的算術平方根.
其中,所有正確說法的序號是(
A.①④
B.②③
C.①②④
D.①③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下面是王老師在數學課堂上給同學們出的一道數學題,要求對以下實數進行分類填空:

,0,,,18,,,-0.56,3.14159,,,0.8080080008,-.

(1)有理數集合:________________________________________________________________________;

(2)無理數集合:________________________________________________________________________;

(3)非負整數集合:________________________________________________________________________;

(4)分數集合:________________________________________________________________________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,點A為半圓O直徑MN所在直線上一點,射線AB垂直于MN,垂足為A,半圓繞M點順時針轉動,轉過的角度記作a;設半圓O的半徑為R,AM的長度為m,回答下列問題:
(1)探究:若R=2,m=1,如圖1,當旋轉30°時,圓心O′到射線AB的距離是;如圖2,當a=°時,半圓O與射線AB相切;
(2)如圖3,在(1)的條件下,為了使得半圓O轉動30°即能與射線AB相切,在保持線段AM長度不變的條件下,調整半徑R的大小,請你求出滿足要求的R,并說明理由.
(3)發現:如圖4,在0°<α<90°時,為了對任意旋轉角都保證半圓O與射線AB能夠相切,小明探究了cosα與R、m兩個量的關系,請你幫助他直接寫出這個關系;cosα=(用含有R、m的代數式表示)
(4)拓展:如圖5,若R=m,當半圓弧線與射線AB有兩個交點時,α的取值范圍是 , 并求出在這個變化過程中陰影部分(弓形)面積的最大值(用m表示)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,經過點A作AE⊥OC,垂足為點D,AE與BC交于點F,與過點B的直線交于點E,且EB=EF.
(1)求證:BE是⊙O的切線;
(2)若CD=1,cos∠AEB= ,求BE的長.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视