精英家教網 > 初中數學 > 題目詳情

【題目】如圖,中,,上一點,且,上任一點,于點,于點,下列結論:①是等腰三角形;②;③;④,其中正確的結論是(

A.①②B.①③④C.①④D.①②③④

【答案】B

【解析】

根據三角形的一個外角等于與它不相鄰的兩個內角的和可得∠ADB=∠C+∠DBC,然后求出∠C=∠DBC,再根據等角對等邊可得DCDB,從而判斷①正確;沒有條件說明∠C的度數,判斷出②錯誤;連接PD,利用△BCD的面積列式求解即可得到PEPFAB,判斷出③正確;過點BBGACFP的延長線于G,根據兩直線平行,內錯角相等可得∠C=∠PBG,∠G=∠CFP90°,然后求出四邊形ABGF是矩形,根據矩形的對邊相等可得AFBG,根據然后利用“角角邊”證明△BPE和△BPG全等,根據全等三角形對應邊相等可得BGBE,再利用勾股定理列式求解即可判斷④正確.

在△BCD中,∠ADB=∠C+∠DBC,

∵∠ADB2C,

∴∠C=∠DBC,

DCDB

∴△DBC是等腰三角形,故①正確;

無法說明∠C30°,故②錯誤;

連接PD,則SBCDBDPEDCPFDCAB,

PEPFAB,故③正確;

過點BBGACFP的延長線于G,

則∠C=∠PBG,∠G=∠CFP90°,

∴∠PBG=∠DBC,四邊形ABGF是矩形,

AFBG,

在△BPE和△BPG中,

∴△BPE≌△BPGAAS),

BGBE,

AFBE,

RtPBE中,PE2BE2BP2

PE2AF2BP2,故④正確.

綜上所述,正確的結論有①③④.

故選:B

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,中,分別以為邊在的同側作正方形,則圖中陰影部分的面積之和為_______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某公司需招聘一名員工,對應聘者甲、乙、丙從筆試、面試、體能三個方面進行量化考核.甲、乙、丙各項得分如下表:

85

80

75

80

90

73

83

79

90

(1)根據三項得分的平均分,從高到低確定三名應聘者的排名順序.

(2)該公司規定:筆試,面試、體能得分分別不得低于80分,80分,70分,并按60%,30%,10%的比例計入總分(不計其他因素條件),請你說明誰將被錄用.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某縣舉辦老、中、青三個年齡段五公里競走活動,其人數比為,如圖所示的扇形統計圖表示 上述分布情況,已知老人有人,則下列說法不正確的是( )

A. 老年所占區域的圓心角是B. 參加活動的總人數是

C. 中年人比老年人多D. 老年人比青年人少

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知,,,平分

1)說明:;(2)求的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】先列表,然后在同一平面直角坐標系內分別描點畫出下列二次函數的圖象,并寫出對稱軸與頂點坐標.

①y=- (x+2)2;②y=- (x-1)2.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:拋物線

(1)寫出拋物線的開口方向、對稱軸;

(2)函數y有最大值還是最小值?并求出這個最大(。┲;

(3)設拋物線與y軸的交點為P,與x軸的交點為Q,求直線PQ的函數解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線y=(m-1)x2+m2-2m-2的圖象開口向下且經過點(0,1).

(1)求m的值;

(2)求此拋物線的頂點坐標及對稱軸;

(3)當x為何值時,y隨x的增大而增大?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(﹣1,0),對稱軸為直線x=2,下列結論:

①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④當x>﹣1時,y的值隨x值的增大而增大.

其中正確的結論有( )

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视