【題目】某配餐公司有A,B兩種營養快餐。一天,公司售出兩種快餐共640份,獲利2160元。兩種快餐的成本價、銷售價如下表。
A種快餐 | B種快餐 | |
成本價 | 5元/份 | 6元/份 |
銷售價 | 8元/份 | 10元/份 |
(1)求該公司這一天銷售A、B兩種快餐各多少份?
(2)為擴大銷售,公司決定第二天對一定數量的A、B兩種快餐同時舉行降價促銷活動。降價的A、B兩種快餐的數量均為第一天銷售A、B兩種快餐數量的2倍,且A種快餐按原銷售價的九五折出售,若公司要求這些快餐當天全部售出后,所獲的利潤不少于3280元,那么B種快餐最低可以按原銷售價打幾折出售?
【答案】(1)該公司這一天銷售A、B兩種快餐各400份,240份;(2)B種快餐最低可以按原銷售價打8.5折出售
【解析】
(1)設學校第一次訂購A種快餐x份B種快餐y份,根據“兩種快餐共計640份,該公司共獲利2160元”列出方程組進行求解;
(2)設B種快餐每份最低打a折,根據利潤不少于3280元列出關于a的不等式,解出a的最小值.
(1)設銷售A種快餐份,則B種快餐(640-
)份。
(8-5)+(10-6)(640-
)=2160
解得:=400 640-
=240份
∴該公司這一天銷售A、B兩種快餐各400份,240份
(2)設B種快餐每份最低打折。
(8×0.95-5)×400×2+(0.1×10-6)×240×2≥3280
解得:≥8.5
∴B種快餐最低可以按原銷售價打8.5折出售
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC內部,且AD=CD,∠ADC=90°,連接BD,若△BCD的面積為10,則AD的長為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,⊙O的直徑AB與弦CD相交于點E,且E為CD中點,過點B作CD的平行線交弦AD的延長線于點F .
(1)求證:BF是⊙O的切線;
(2)連結BC,若⊙O的半徑為2,tan∠BCD=,求線段AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在正方形ABCD中,連結AC,在AC上截取AE=AD,作△ADE的外接圓交AB于點F,連結DF交AC于點M,連結EF,下列選項不正確的是( 。
A.
B.AM=EC
C.∠EFB=∠AFD
D.S四邊形BCMF=S四邊形ADEF
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB⊥AC,CD、BE分別是△ABC的角平分線,AG∥BC,AG⊥BG,下列結論:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°,其中正確的結論有( 。﹤
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線y=x+3與x軸交于點A,與y軸交于點B,拋物線y=﹣x2+bx+c經過A、B兩點,與x軸交于另一個點C,對稱軸與直線AB交于點E,拋物線頂點為D.
(1)點A的坐標為 ,點B的坐標為 .
(2)①求拋物線的解析式;
②直線AB與拋物線的對稱軸交于點E,在x軸上是否存在點M,使得ME+MB最小,求出點M的坐標.
(3)點P從點D出發,沿對稱軸向下以每秒1個單位長度的速度勻速運動,設運動的時間為t秒,當t為何值時,以P、B、C為頂點的三角形是等腰三角形?直接寫出所有符合條件的t值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了落實國務院的指示精神,某地方政府出臺了一系列“三農”優惠政策,使農民收入大幅度增加.某農戶生產經銷一種農產品,已知這種產品的成本價為每千克20元,市場調查發現,該產品每天的銷售量y(千克)與銷售價x(元/千克)有如下關系:y=﹣2x+80.設這種產品每天的銷售利潤為w元.
(1)求w與x之間的函數關系式.
(2)該產品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規定這種產品的銷售價不高于每千克28元,該農戶想要每天獲得150元的銷售利潤,銷售價應定為每千克多少元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com