【題目】如圖,直線AB、CD相交于點O,已知∠AOC=75°,∠BOE :∠DOE=2:3.
(1)求∠BOE的度數;
(2)若OF平分∠AOE,∠AOC與∠AOF相等嗎?為什么?
科目:初中數學 來源: 題型:
【題目】閱讀下列一段文字,然后回答下列問題:
已知平面內兩點P1(x1,y1),P2(x2,y2),其兩點間的距離。例如:已知P(3,1),Q(1,-2),則這兩點間的距離
.特別地,如果兩點M(x1,y1),N(x2,y2),所在的直線與坐標軸重合或平行于坐標軸或者垂直于坐標軸,那么這兩點間的距離公式可簡化為
或
。
(1)已知A(2,3),B(-1,-2),則A,B兩點間的距離為_________;
(2)已知M,N在平行于y軸的直線上,點M的縱坐標為-2,點N的縱坐標為3,則M,N兩點間的距離為_________;
(3)在平面直角坐標系中,已知A(0,4),B(4,2),在x軸上找點P,使PA+PB的長度最短,求出點P的坐標及PA+PB的最短長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖,,
,
平分
,
平分
,求
的度數.
(2)如果(1)中,其他條件不變,求
的度數.
(3)如果(1)中其他條件不變,則
的度數為 .(直接寫出結果)
(4)從(1)、(2)、(3)的結果能看出的規律是:與
有什么關系,與哪個角的大小無關?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線BD=12cm,AC=16cm,AC,BD相交于點O,若E,F是AC上兩動點,分別從A,C兩點以相同的速度向C、A運動,其速度為0.5cm/s.
(1)當E與F不重合時,四邊形DEBF是平行四邊形嗎?說明理由;
(2)點 E,F在AC上運動過程中,以D、E、B、F為頂點的四邊形是否可能為矩形?如能,求出此時的運動時間t的值;如不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知三角形ABC,D為AB邊上一點.
(1) 過點D畫線段BC的平行線DE,交AC于點E;過點A畫線段BC的垂線AH,垂足為點H.
(2)用符號語言分別描述直線DE與線段BC及直線AH與線段BC的位置關系.
(3)比較大小:線段BH 線段BA,理由為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形OABC的頂點O在坐標原點,頂點A的坐標為(4,3).
(1)頂點的坐標為( , );
(2)現有動點P、Q分別從C、A同時出發,點P沿線段CB向終點B運動,速度為每秒1個單位,點Q沿折線A→O→C向終點C運動,速度為每秒k個單位,當運動時間為2秒時,以P、Q、C為頂點的三角形是等腰三角形,求此時k的值.
(3)若正方形OABC以每秒個單位的速度沿射線AO下滑,直至頂點C落到
軸上時停止下
滑.設正方形OABC在軸下方部分的面積為S,求S關于滑行時間
的函數關系式,并寫出相應自變量
的取值范圍.
(備用圖)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連結AC,過上一點E作EG∥AC交CD的延長線于點G,連結AE交CD于點F,且EG=FG,連結CE.
(1)求證:△ECF∽△GCE;
(2)求證:EG是⊙O的切線;
(3)延長AB交GE的延長線于點M,若tanG=,AH=3
,求EM的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E為CD上一點,將△BCE沿BE翻折后點C恰好落在AD邊上的點F處,將線段EF繞點F旋轉,使點E落在BE上的點G處,連接CG.
(1)證明:四邊形CEFG是菱形;
(2)若AB=8,BC=10,求四邊形CEFG的面積;
(3)試探究當線段AB與BC滿足什么數量關系時,BG=CG,請寫出你的探究過程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com