【題目】如圖,正六邊形ABCDEF內接于⊙O,BE是⊙O的直徑,連接BF,延長BA,過F作FG⊥BA,垂足為G.
(1)求證:FG是⊙O的切線;
(2)已知FG=2,求圖中陰影部分的面積.
【答案】(1)見解析;(2) 圖中陰影部分的面積為.
【解析】
(1)連接OF,AO,根據題意可得∠ABF=∠AFB=∠EBF=30°,再利用OB=OF,證明AB∥OF,即可解答
(2)先利用等弧對等角求出△AOF是等邊三角形,再證明S△ABF=S△AOF,即可解答
(1)證明:連接OF,AO,
∵AB=AF=EF,
∴,
∴∠ABF=∠AFB=∠EBF=30°,
∵OB=OF,
∴∠OBF=∠BFO=30°,
∴∠ABF=∠OFB,
∴AB∥OF,
∵FG⊥BA,
∴OF⊥FG,
∴FG是⊙O的切線;
(2)解:∵,
∴∠AOF=60°,
∵OA=OF,
∴△AOF是等邊三角形,
∴∠AFO=60°,
∴∠AFG=30°,
∵FG=2,
∴AF=4,
∴AO=4,
∵AF∥BE,
∴S△ABF=S△AOF,
∴圖中陰影部分的面積=.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,AB為⊙O的直徑,過點A作⊙O的切線交BC的延長線于點E,在弦BC上取一點F,使AF=AE,連接AF并延長交⊙O于點D.
(1)求證:∠B=∠CAD;
(2)若CE=2,∠B=30°,求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下圖是學習分式方程應用時,老師板書的問題和兩名同學所列的方程.
根據以上信息,解答下列問題:
(1)甲同學所列方程中的表示_________________;乙同學所列方程中的
表示________________;
(2)兩個方程中任選一個,解方程并回答老師提出的問題.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“校園安全”越來越受到人們的關注,我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統計,繪制了下面兩幅尚不完整的統計圖.根據圖中信息回答下列問題:
(1)接受問卷調查的學生共有______人,條形統計圖中m的值為______;
(2)扇形統計圖中“了解很少”部分所對應扇形的圓心角的度數為______;
(3)若該中學共有學生1800人,根據上述調查結果,可以估計出該學校學生中對校園安全知識達到“非常了解”和“基本了解”程度的總人數為______人;
(4)若從對校園安全知識達到“非常了解”程度的2名男生和2名女生中隨機抽取2人參加校園安全知識競賽,請用列表或畫樹狀圖的方法,求恰好抽到1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,我們定義直線y=ax-a為拋物線y=ax2+bx+c(a、b、c為常數,a≠0)的“衍生直線”;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其“衍生三角形”.已知拋物線與其“衍生直線”交于A、B兩點(點A在點B的左側),與x軸負半軸交于點C.
(1)填空:該拋物線的“衍生直線”的解析式為 ,點A的坐標為 ,點B的坐標為 ;
(2)如圖,點M為線段CB上一動點,將△ACM以AM所在直線為對稱軸翻折,點C的對稱點為N,若△AMN為該拋物線的“衍生三角形”,求點N的坐標;
(3)當點E在拋物線的對稱軸上運動時,在該拋物線的“衍生直線”上,是否存在點F,使得以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點坐標分別是A(1,1),B(4,1),C(3,3).
(1)將△ABC向下平移5個單位后得到△A1B1C1,請畫出△A1B1C1;
(2)將△ABC繞原點O逆時針旋轉90°后得到△A2B2C2,請畫出△A2B2C2;
(3)判斷以O,A1,B為頂點的三角形的形狀.(無須說明理由)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點在線段
上,在
的同側作等腰
和等腰
,
與
、
分別交于點
、
.對于下列結論:
①;②
;③
.其中正確的是( )
A. ①②③ B. ① C. ①② D. ②③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交AB,AD于點M,N;②分別以M,N為圓心,以大于MN的長為半徑作弧,兩弧相交于點P;③作AP射線,交邊CD于點Q,若DQ=2QC,BC=3,則平行四邊形ABCD周長為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在三角形中,
,
和
關于
對稱
(1)將圖1中的以
為旋轉中心,逆時針方向旋轉角
,使
,得到如圖2所示的
,分別延長
和
交于點
,則四邊形
的形狀是 ;
(2)將圖1中的以
為旋轉中心,按逆時針方向旋轉角
,使
,得到如圖3所示的
,連接
和
,得到四邊形
,請判斷四邊形
的形狀,并說明理由;
(3)如圖3中,,將
沿著射線
方向平移
,得到
,連接
,使四邊形
恰好為正方形,請直接寫出a的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com