【題目】“校園安全”越來越受到人們的關注,我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統計,繪制了下面兩幅尚不完整的統計圖.根據圖中信息回答下列問題:
(1)接受問卷調查的學生共有______人,條形統計圖中m的值為______;
(2)扇形統計圖中“了解很少”部分所對應扇形的圓心角的度數為______;
(3)若該中學共有學生1800人,根據上述調查結果,可以估計出該學校學生中對校園安全知識達到“非常了解”和“基本了解”程度的總人數為______人;
(4)若從對校園安全知識達到“非常了解”程度的2名男生和2名女生中隨機抽取2人參加校園安全知識競賽,請用列表或畫樹狀圖的方法,求恰好抽到1名男生和1名女生的概率.
【答案】(1)60,10;(2)96°;(3)1020;(4)
【解析】
(1)根據基本了解的人數以及所占的百分比可求得接受調查問卷的人數,進行求得不了解的人數,即可求得m的值;
(2)用360度乘以“了解很少”的比例即可得;
(3)用“非常了解”和“基本了解”的人數和除以接受問卷的人數,再乘以1800即可求得答案;
(4)畫樹狀圖表示出所有可能的情況數,再找出符合條件的情況數,利用概率公式進行求解即可.
(1)接受問卷調查的學生共有(人),
,
故答案為:60,10;
(2)扇形統計圖中“了解很少”部分所對應扇形的圓心角的度數,
故答案為:96°;
(3)該學校學生中對校園安全知識達到“非常了解”和“基本了解”程度的總人數為:(人),
故答案為:1020;
(4)由題意列樹狀圖:
由樹狀圖可知,所有等可能的結果有12種,恰好抽到1名男生和1名女生的結果有8種,
∴恰好抽到1名男生和1名女生的概率為.
科目:初中數學 來源: 題型:
【題目】已知在同一平面直角坐標系中有函數y1=ax2﹣2ax+b,y2=﹣ax+b,其中ab≠0.
(1)求證:函數y2的圖象經過函數y1的圖象的頂點;
(2)設函數y2的圖象與x軸的交點為M,若點M關于y軸的對稱點M'在函數y1圖象上,求a,b滿足的關系式;
(3)當﹣1<x<1時,比較y1與y2的大。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知正方形ABCD與正方形CEFG,M是AF的中點,連接DM,EM.
(1)如圖1,點E在CD上,點G在BC的延長線上,請判斷DM,EM的數量關系與位置關系,并直接寫出結論;
(2)如圖2,點E在DC的延長線上,點G在BC上,(1)中結論是否仍然成立?請證明你的結論;
(3)將圖1中的正方形CEFG繞點C旋轉,使D,E,F三點在一條直線上,若AB=13,CE=5,請畫出圖形,并直接寫出MF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜邊OB=4,將Rt△OAB繞點O順時針旋轉60°,連接BC
(1)如圖1,連接AC,作OP⊥AC,垂足為P,求△AOC的面積和線段OP的長;
(2)如圖2,點M是線段OC的中點,點N是線段OB上的動點(不與點O重合),求△CMN周長的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖,有下列5個結論:①abc>0;②b<a+c;③當x<0時,y隨x的增大而增大;④2c<3b;⑤a+b>m(am+b)(其中m≠1)其中正確的個數是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD內接于⊙O,∠1至∠6是六個不同位置的圓周角.
(1)分別寫出與∠1、∠2相等的圓周角,并求∠1+∠2+∠3+∠4的值;
(2)若∠1-∠2=∠3-∠4,求證: AC⊥BD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩個草莓采摘園為吸引顧客,在草莓銷售價格相同的基礎上分別推出優惠方案,甲園:顧客進園需購買門票,采摘的草莓按六折優惠.乙園:顧客進園免門票,采摘草莓超過一定數量后,超過的部分打折銷售.活動期間,某顧客的草莓采摘量為x kg,若在甲園采摘需總費用y1元,若在乙園采摘需總費用y2元, y1,y2與x之間的函數圖象如圖所示,則下列說法中錯誤的是( )
A.甲園的門票費用是60元
B.草莓優惠前的銷售價格是40元/kg
C.乙園超過5 kg后,超過的部分價格優惠是打五折
D.若顧客采摘12 kg草莓,那么到甲園或乙園的總費用相同
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com