【題目】如圖,點P是菱形ABCD對角線AC上的一點,連接DP并延長DP交邊AB于點E,連接BP并延長交邊AD于點F,交CD的延長線于點G.
(1)求證:△APB≌△APD;
(2)已知DF:FA=1:2,設線段DP的長為x,線段PF的長為y. ①求y與x的函數關系式;
②當x=6時,求線段FG的長.
【答案】
(1)證明:∵點P是菱形ABCD對角線AC上的一點,
∴∠DAP=∠PAB,AD=AB,
∵在△APB和△APD中
,
∴△APB≌△APD(SAS)
(2)解:①∵△APB≌△APD,
∴DP=PB,∠ADP=∠ABP,
∵在△DFP和△BEP中,
,
∴△DFP≌△BEP(ASA),
∴PF=PE,DF=BE,
∵四邊形ABCD是菱形,
∴GD∥AB,
∴ =
,
∵DF:FA=1:2,
∴ =
,
=
,
∴ =
,
∵ =
,即
=
,
∴y= x;
②當x=6時,y= ×6=4,
∴PF=PE=4,DP=PB=6,
∵ =
=
,
∴ =
,
解得:FG=5,
故線段FG的長為5
【解析】(1)根據菱形的性質得出∠DAP=∠PAB,AD=AB,再利用全等三角形的判定得出△APB≌△APD;(2)①首先證明△DFP≌△BEP,進而得出 =
,
=
,進而得出
=
,即
=
,即可得出答案; ②根據①中所求得出PF=PE=4,DP=PB=6,進而得出
=
=
,求出即可.
【考點精析】關于本題考查的菱形的性質和相似三角形的判定與性質,需要了解菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能得出正確答案.
科目:初中數學 來源: 題型:
【題目】已知:關于x的二次函數y=﹣x2+ax(a>0),點A(n,y1)、B(n+1,y2)、C(n+2,y3)都在這個二次函數的圖象上,其中n為正整數.
(1)y1=y2 , 請說明a必為奇數;
(2)設a=11,求使y1≤y2≤y3成立的所有n的值;
(3)對于給定的正實數a,是否存在n,使△ABC是以AC為底邊的等腰三角形?如果存在,求n的值(用含a的代數式表示);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形OABC是邊長為2的正方形,頂點A、C分別在x,y軸的正半軸上.點Q在對角線OB上,且QO=OC,連接CQ并延長CQ交邊AB于點P.則點P的坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖.Rt△ABC內接于⊙O,BC為直徑,AB=4,AC=3,D是 的中點,CD與AB的交點為E,則
等于( )
A.4
B.3.5
C.3
D.2.8
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在不透明的袋子中有四張標著數字1,2,3,4的卡片,小明、小華兩人按照各自的規則玩抽卡片游戲. 小明畫出樹狀圖如圖所示:
小華列出表格如下:
第一次 | 1 | 2 | 3 | 4 |
1 | (1,1) | (2,1) | (3,1) | (4,1) |
2 | (1,2) | (2,2) | ① | (4,2) |
3 | (1,3) | (2,3) | (3,3) | (4,3) |
4 | (1,4) | (2,4) | (3,4) | (4,4) |
回答下列問題:
(1)根據小明畫出的樹形圖分析,他的游戲規則是,隨機抽出一張卡片后(填“放回”或“不放回”),再隨機抽出一張卡片;
(2)根據小華的游戲規則,表格中①表示的有序數對為;
(3)規定兩次抽到的數字之和為奇數的獲勝,你認為誰獲勝的可能性大?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于兩個相似三角形,如果沿周界按對應點順序環繞的方向相同,那么稱這兩個三角形互為順相似;如果沿周界按對應點順序環繞的方向相反,那么稱這兩個三角形互為逆相似.例如,如圖①,△ABC∽△A′B′C′,且沿周界ABCA與A′B′C′A′環繞的方向相同,因此△ACB和△A′B′C′互為順相似;如圖②,△ABC∽△A′B′C′,且沿周界ABCA與A′B′C′A′環繞的方向相反,因此△ACB和△A′B′C′互為逆相似.
(1)根據圖Ⅰ,圖Ⅱ和圖Ⅲ滿足的條件.可得下列三對相似三角形:①△ADE與△ABC;②△GHO與△KFO;③△NQP與△NMQ;其中,互為順相似的是;互為逆相似的是 . (填寫所有符合要求的序號).
(2)如圖③,在銳角△ABC中,∠A<∠B<∠C,點P在△ABC的邊上(不與點A,B,C重合).過點P畫直線截△ABC,使截得的一個三角形與△ABC互為逆相似.請根據點P的不同位置,探索過點P的截線的情形,畫出圖形并說明截線滿足的條件,不必說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在平面直角坐標系xOy中,O為坐標原點,點P是反比例函數y= (x>0)圖象上的一個動點,若以點P為圓心,3為半徑的圓與直線y=x相交,交點為A,B,當弦AB的長等于2
時,點P的坐標為( )
A.(1,6)和(6,1)
B.(2,3)和(3,2)??
C.( ,3
)和(3
,
)
D.( ,2
)和(2
,
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com