【題目】勾股定理是數學史上非常重要的一個定理.早在多年以前,人們就開始對它進行研究,至今已有幾百種證明方法.在歐幾里得編的《原本》中證明勾股定理的方法如下,請同學們仔細閱讀并解答相關問題:如圖,分別以
的三邊為邊長,向外作正方形
、
、
.
(1)連接、
,求證:
(2)過點作
的垂線,交
于點
,交
于點
.
①試說明四邊形與正方形
的面積相等;
②請直接寫出圖中與正方形的面積相等的四邊形.
(3)由第(2)題可得:正方形的面積
正方形
的面積
_______________的面積,即在
中,
__________________.
【答案】(1)詳見解析;(2)①詳見解析;②四邊形與正方形
的面積相等;(3)正方形
,
.
【解析】
(1)根據正方形的性質和三角形全等的判定定理,即可得到結論;
(2)①由得四邊形
的面積為
的面積的
倍,同理正方形
的面積為
的面積的
倍,結合
,即可得到結論;
②連接AF,BH,先證ACFHCB(SAS),再類似①題的方法,即可得到結論;
(3)由四邊形與正方形
的面積相等,四邊形
與正方形
的面積相等,即可得到答案.
(1)∵四邊形、四邊形
是正方形,
∴∠BAE=∠CAI=90°,AE=AB,AC=AI,
∴∠EAC=∠BAI,
在和
中,
∵,
∴(SAS);
(2)①∵BM⊥AC,
∴,
∴四邊形的面積=
的面積的
倍,
同理:正方形的面積=
的面積的
倍,
又,
四邊形
與正方形
的面積相等;
②四邊形與正方形
的面積相等,理由如下:
連接AF,BH,
∵四邊形、四邊形
是正方形,
∴AC=HC,BC=FC,∠ACB=∠BCF,即:∠ACF=∠HCB,
∴ACFHCB(SAS),
∵BNHC,
∴四邊形的面積是HCB面積的2倍,
同理:正方形的面積是ACF面積的2倍,
∴四邊形與正方形
的面積相等;
(3)由(2)可知:四邊形與正方形
的面積相等,四邊形
與正方形
的面積相等,
∴正方形的面積
正方形
的面積
正方形
的面積,
即:.
故答案是:正方形,
.
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=3cm,AC=4cm,按圖中所示方法將△BCD沿BD折疊,使點C落在AB邊的C′點,那么△ADC′的面積是____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一次函數y=kx+b的圖象經過點A(—1,—5),且與正比例函數的圖象相交于點B(2,a).
(1)求a的值;
(2)求一次函數y=kx+b的表達式;
(3)在同一坐標系中,畫出這兩個函數的圖象,并求這兩條直線與y軸圍成的三角形的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】萬圣節兩周前,某商店購進1000個萬圣節面具,進價為每個6元,第一周以每個10元的價格售出200個;隨著萬圣節的臨近,預計第二周若按每個10元的價格銷售可售出400個,但商店為了盡快減少庫存,決定單價降價x元銷售根據市場調查,單價每降低1元,可多售出100個,但售價不得低于進價
;節后,商店對剩余面具清倉處理,以第一周售價的四折全部售出.
當單價降低2元時,計算第二周的銷售量和售完這批面具的總利潤;
如果銷售完這批面具共獲利1300元,問第二周每個面具的銷售價格為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小王的學校舉行了一次年級考試,考了若干門課程,后加試了一門,小王考得分,這時小王的平均成績比最初的平均成績提高了
分.后來又加試了一門,小王考得
分,這時小王的平均成績比最初的平均成績下降了
分,則小王共考了(含加試的兩門)________門課程,最后平均成績為________分.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于的一元二次方程x2-4x+k+1=0
(1)若=-1是方程的一個根,求k值和方程的另一根;
(2)設x1,x2是關于x的方程x2-4x+k+1=0的兩個實數根,是否存在實數k,使得x1x2>x1+x2成立?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB與x軸,y軸的交點為A,B兩點,點A,B的縱坐標、橫坐標如圖所示.
(1)求直線AB的表達式及△AOB的面積S△AOB.
(2)在x軸上是否存在一點,使S△PAB=3?若存在,求出P點的坐標,若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C、D是半圓O上的兩點,且OD∥BC,OD與AC交于點E.
(1)若∠B=70°,求弧CD的度數;
(2)若AB=26,DE=8,求AC的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com