【題目】萬圣節兩周前,某商店購進1000個萬圣節面具,進價為每個6元,第一周以每個10元的價格售出200個;隨著萬圣節的臨近,預計第二周若按每個10元的價格銷售可售出400個,但商店為了盡快減少庫存,決定單價降價x元銷售根據市場調查,單價每降低1元,可多售出100個,但售價不得低于進價
;節后,商店對剩余面具清倉處理,以第一周售價的四折全部售出.
當單價降低2元時,計算第二周的銷售量和售完這批面具的總利潤;
如果銷售完這批面具共獲利1300元,問第二周每個面具的銷售價格為多少元?
【答案】(1)當單價降低2元時,第二周的銷售量為600和售完這批面具的總利潤1600 ;(2) 第二周的銷售價格為元.
【解析】
(1)第二周的銷售量=400+100x.利潤=售價-成本價;
(2)根據紀念品的進價和售價以及銷量分別表示出兩周的總利潤,進而得出等式求出即可.
(1)第二周的銷售量為:400+100x=400+100x=400+100×2=600.
總利潤為:200×(10-6)+(8-6)×600+200(4-6)=1600.
答:當單價降低2元時,第二周的銷售量為600和售完這批面具的總利潤1600;
由題意得出:200×(10-6)+(10-x-6)(400+100x)+(4-6)[(1000-200)-(400+100x)]=1300,
整理得:x2-2x-3=0,
解得:x1=3;x2=-1(舍去),
∴10-3=7(元).
答:第二周的銷售價格為7元.
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,我們定義直線為拋物線
、b、c為常數,
的“夢想直線”;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其“夢想三角形”.
已知拋物線與其“夢想直線”交于A、B兩點
點A在點B的左側
,與x軸負半軸交于點C.
填空:該拋物線的“夢想直線”的解析式為______,點A的坐標為______,點B的坐標為______;
如圖,點M為線段CB上一動點,將
以AM所在直線為對稱軸翻折,點C的對稱點為N,若
為該拋物線的“夢想三角形”,求點N的坐標;
當點E在拋物線的對稱軸上運動時,在該拋物線的“夢想直線”上,是否存在點F,使得以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與坐標軸相交于
、
、
三點,
是線段
上一動點(端點除外),過
作
,交
于點
,連接
.
直接寫出
、
、
的坐標;
求拋物線
的對稱軸和頂點坐標;
求
面積的最大值,并判斷當
的面積取最大值時,以
、
為鄰邊的平行四邊形是否為菱形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在等腰中,
,
,點
,點
分別是
軸,
軸上兩個動點,直角邊
交
軸于點
,斜邊
交
軸于點
.
(1)如圖①,當等腰運動到使點
恰為
中點時,連接
,求證:
;
(2)如圖②,當等腰運動到使
時,
點的橫坐標為
,
.在
軸上是否存在點
,使
為等腰三角形?若存在,請直接寫出點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】勾股定理是數學史上非常重要的一個定理.早在多年以前,人們就開始對它進行研究,至今已有幾百種證明方法.在歐幾里得編的《原本》中證明勾股定理的方法如下,請同學們仔細閱讀并解答相關問題:如圖,分別以
的三邊為邊長,向外作正方形
、
、
.
(1)連接、
,求證:
(2)過點作
的垂線,交
于點
,交
于點
.
①試說明四邊形與正方形
的面積相等;
②請直接寫出圖中與正方形的面積相等的四邊形.
(3)由第(2)題可得:正方形的面積
正方形
的面積
_______________的面積,即在
中,
__________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】要建一個如圖所示的面積為300 的長方形圍欄,圍欄總長50m,一邊靠墻(墻長25m),
(1)求圍欄的長和寬;
(2)能否圍成面積為400 的長方形圍欄?如果能,求出該長方形的長和寬,如果不能請說明理由。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com