【題目】某文具店購進一批紀念冊,每本進價為20元,在銷售過程中發現該紀念冊每周的銷售量y(本)與每本紀念冊的售價x(元)之間滿足一次函數關系:當銷售單價為22元時,銷售量為36本;當銷售單價為24元時,銷售量為32本.
(1)求出y與x的函數關系式;
(2)設該文具店每周銷售這種紀念冊所獲得的利潤為w元,將該紀念冊銷售單價定為多少元時,才能使文具店銷售該紀念冊所獲利潤最大?最大利潤是多少?
【答案】(1) y=﹣2x+80;(2) 單價定為 30 元時,最大利潤是 200 元.
【解析】
(1)利用待定系數法求解可得;(2)根據所獲得總利潤=每本利潤×銷售數量列出函數解析式,配方成頂點式可得答案.
(1)設 y 與 x 的關系式為 y=kx+b,
把(22,36)與(24,32)代入, 得: ,
解得:, 則 y=﹣2x+80;
(2)由題意可得:
w=(x﹣20)(﹣2x+80)
=﹣2x2+120x﹣1600
=﹣2(x﹣30)2+200,
此時當 x=30 時,w 最大,
∴即當 x=30 時,w 最大=﹣2×(30﹣30)2+200=200(元),
答:該紀念冊銷售單價定為 30 元時,才能使文具店銷售該紀念冊所獲利潤最大,
最大利潤是 200 元.
科目:初中數學 來源: 題型:
【題目】閱讀下面材料:
學習了三角形全等的判定方法(即“SAS”“ASA”“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聰繼續對“兩個三角形滿足兩邊和其中一邊的對角對應相等”的情形進行研究
小聰將命題用符號語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.
小聰的探究方法是對∠B分為“直角、鈍角、銳角”三種情況進行探究.
第一種情況:當∠B 是直角時,如圖1,△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根據“HL”定理,可以知道Rt△ABC≌Rt△DEF.
第二種情況:當∠B 是銳角時,如圖2,BC=EF,∠B=∠E<90°,在射線EM上有點D,使DF=AC,畫出符合條件的點D,則△ABC和△DEF的關系是 ;
A.全等 B.不全等 C.不一定全等
第三種情況:當∠B是鈍角時,如圖3,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E>90°.過點C作AB邊的垂線交AB延長線于點M;同理過點F作DE邊的垂線交DE延長線于N,根據“ASA”,可以知道△CBM≌△FEN,請補全圖形,進而證出△ABC≌△DEF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:一個自然數,右邊的數字總比左邊的數字小,我們稱它為“下滑數”(如:32,641,8531等).現從兩位數中任取一個,恰好是“下滑數”的概率為( 。
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個紙盒內有張完全相同的卡片,分別標號為
,
,
,
.隨機抽取一張卡片后不放回,再隨機抽取另一張卡片.
(1)用列舉法求“兩次抽出卡片的標號等于”的概率;
(2)小明同學連續做了次試驗,這
次試驗沒有一次出現“兩次抽出卡片的標號和等于
”.他說,“第
次試驗我一定能夠‘兩次抽出卡片的標號和等于
’”.你認為他說得對嗎,為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=ax2+bx+c的圖象與y軸正半軸相交,其頂點坐標為( ,1),下列結論:①abc<0;②a+b=0;③4ac﹣b2=4a;④a+b+c<0.其中正確的有( )個.
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,點D是邊BC上一動點 (不與B,C重合),∠ADE=∠B=α,DE交AC于點E,且 .下列結論: ①△ADE∽△ACD;②當BD=6時,△ABD與△DCE全等;③△DCE為直角三角形時,BD為8或
;④CD2=CECA.其中正確的結論是________(把你認為正確結論的序號都填上)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線與
軸、
軸分別交于
、
兩點,拋物線
經過
、
兩點,與
軸的另一個交點為
,連接
.
(1)求拋物線的解析式及點的坐標;
(2)點 在拋物線上,連接
,當
時,求點
的坐標;
(3)點從點
出發,沿線段
由
向
運動,同時點
從點
出發,沿線段
由
向
運動,
、
的運動速度都是每秒
個單位長度,當
點到達
點時,
、
同時停止運動,試問在坐標平面內是否存在點
,使
、
運動過程中的某一時刻,以
、
、
、
為頂點的四邊形為菱形?若存在,直接寫出點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某大學生創業團隊抓住商機,購進一批干果分裝成營養搭配合理的小包裝后出售,每袋成本3元.試銷期間發現每天的銷售量y(袋)與銷售單價x(元)之間滿足一次函數關系,部分數據如表所示,其中3.5≤x≤5.5,另外每天還需支付其他費用80元.
(1)請直接寫出y與x之間的函數關系式;
(2)如果每天獲得160元的利潤,銷售單價為多少元?
(3)設每天的利潤為w元,當銷售單價定為多少元時,每天的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(,1),B(2
,0),點P為線段OB上一動點,將△AOP沿AO翻折得到△AOC,將△ABP沿AB翻折得到△ABD,則△ACD面積的最小值為_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com