【題目】如圖,在矩形ABCD中,AD=3AB=6.點P是AD的中點,點E在BC上,CE=2BE,點M、N在線段BD上,若△PMN是等腰三角形且底角與∠DEC相等,則MN=______
【答案】12或
【解析】
分兩種情況:①MN為等腰△PMN的底邊時,作PF⊥MN于F,則∠PFM=∠PFN=90°,由矩形的性質得出AB=CD,BC=AD=3AB=6,∠A=∠C=90°,得出AB=CD=
,BD=
=20,證明△PDF∽△BDA,得出
,求出PF=3,證出CE=2CD,由等腰三角形的性質得出MF=NF,∠PNF=∠DEC,證出△PNF∽△DEC,得出
=2,求出NF=2PF=6,即可得出答案;
②MN為等腰△PMN的腰時,作PF⊥BD于F,由①得:PF=3,MF=6,設MN=PN=x,則FN=6x,在Rt△PNF中,由勾股定理得出方程,解方程即可.
分兩種情況:
則①MN為等腰△PMN的底邊時,作PF⊥MN于F,如圖1所示:
則∠PFM=∠PFN=90°,
∵四邊形ABCD是矩形,
∴AB=CD,BC=AD=3AB=6,∠A=∠C=90°,
∴AB=CD=2,BD=
=20,
∵點P是AD的中點,
∴PD=AD=
,
∵∠PDF=∠BDA,
∴△PDF∽△BDA,
∴,即
,
解得:PF=3,
∵CE=2BE,
∴BC=AD=3BE,
∴BE=CD,
∴CE=2CD,
∵△PMN是等腰三角形且底角與∠DEC相等,PF⊥MN,
∴MF=NF,∠PNF=∠DEC,
∵∠PFN=∠C=90°,
∴△PNF∽△DEC,
∴=2,
∴MF=NF=2PF=6,
∴MN=2NF=12;
②MN為等腰△PMN的腰時,作PF⊥BD于F,如圖2所示:
由①得:PF=3,MF=6,
設MN=PN=x,則FN=6x,
在Rt△PNF中,32+(6x)2=x2,
解得:x=,即MN=
;
綜上所述,MN的長為12或
故答案為:12或.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經過點D,分別交AC,AB于點E,F.
(1)試判斷直線BC與⊙O的位置關系,并說明理由;
(2)若BD=2,BF=2,求陰影部分的面積(結果保留π).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:有兩個相鄰內角互余的四邊形稱為鄰余四邊形,這兩個角的夾邊稱為鄰余線.
(1)如圖1,在△ABC中,AB=AC,AD是△ABC的角平分線,E,F分別是BD,AD上的點.求證:四邊形ABEF是鄰余四邊形.
(2)如圖2,在5×4的方格紙中,A,B在格點上,請畫出一個符合條件的鄰余四邊形ABEF,使AB是鄰余線,E,F在格點上.
(3)如圖3,在(1)的條件下,取EF中點M,連結DM并延長交AB于點Q,延長EF交AC于點N.若N為AC的中點,DE=2BE,QB=6,求鄰余線AB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,等腰直角三角形ABC的頂點A,B分別在x軸,y軸的負半軸上,∠ABC=90°,CA⊥x軸,點C在函數y=(x<0)的圖象上,若AB=1,則k的值為( 。
A.1B.﹣1C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店購進一批成本為每件 30 元的商品,經調查發現,該商品每天的銷售量 y(件)與銷售單價 x(元)之間滿足一次函數關系,其圖象如圖所示.
(1)求該商品每天的銷售量 y 與銷售單價 x 之間的函數關系式;
(2)若商店按單價不低于成本價,且不高于 50 元銷售,則銷售單價定為多少,才能使銷售該商品每天獲得的利潤 w(元)最大?最大利潤是多少?
(3)若商店要使銷售該商品每天獲得的利潤不低于 800 元,則每天的銷售量最少應為多少件?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一種火爆的網紅電子產品,每件產品成本元、工廠將該產品進行網絡批發,批發單價
(元)與一次性批發量
(件)(
為正整數)之間滿足如圖所示的函數關系.
直接寫出
與
之間所滿足的函數關系式,并寫出自變量
的取值范圍;
若一次性批發量不超過
件,當批發量為多少件時,工廠獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為響應國家的“一帶一路”經濟發展戰略,樹立品牌意識,我市質檢部門對A、B、C、D四個廠家生產的同種型號的零件共2000件進行合格率檢測,通過檢測得出C廠家的合格率為95%,并根據檢測數據繪制了如圖1、圖2兩幅不完整的統計圖.
(1)抽查D廠家的零件為 件,扇形統計圖中D廠家對應的圓心角為 ;
(2)抽查C廠家的合格零件為 件,并將圖1補充完整;
(3)通過計算說明合格率排在前兩名的是哪兩個廠家;
(4)若要從A、B、C、D四個廠家中,隨機抽取兩個廠家參加德國工業產品博覽會,請用“列表法”或“畫樹形圖”的方法求出(3)中兩個廠家同時被選中的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,小軍(AB)、小麗(CD)和小紅(EF)同時站在路燈下的筆直路線上,其中小麗和小紅的影子分別是BD和FM.
(1)請你在圖中畫出路燈燈泡所在的位置(用點P表示),并畫出小軍AB此時在路燈下的影子(用線段BN表示).
(2)若小麗和小紅身高都是1.7米,小軍身高1.8米,BD=2米,DF=3米,FM=1米,求路燈高度和小軍影長,
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合與探究:
如圖,將拋物線向右平移
個單位長度,再向下平移
個單位長度后,得到的拋物線
,平移后的拋物線
與
軸分別交于
,
兩點,與
軸交于點
.拋物線
的對稱軸
與拋物線
交于點
.
(1)請你直接寫出拋物線的解析式;(寫出頂點式即可)
(2)求出,
,
三點的坐標;
(3)在軸上存在一點
,使
的值最小,求點
的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com