【題目】如圖,Rt△ABC中,∠ACB=90°,∠B=30°,AB=12cm,以AC為直徑的半圓O交AB于點D,點E是AB的中點,CE交半圓O于點F,則圖中陰影部分的面積為______cm2.
【答案】3π-
【解析】
易證∠BCE=∠ACD,則根據弦切角定理可以得到與弦AD圍成的弓形的面積等于
與弦CF圍成的弓形的面積相等,則陰影部分的面積等于半圓的面積減去直角△ACD的面積,再減去弓形的面積,據此即可求解.
解:∵Rt△ABC中,∠ACB=90°,∠B=30°,AB=12cm,
∴AC=AB=6cm,∠B=60°
∵E是AB的中點,
∴CE=AB,
則△ACE是等邊三角形.
∴∠BCE=90°-60°=30°,
∵AC是直徑,
∴∠CDA=90°,
∴∠ACD=90°-∠A=30°,
∴∠BCE=∠ACD,
∴=
,
連接OD,作OG⊥CD于點G,
則∠COD=120°,OG=OC=
,CG=
CD=
.
∴陰影部分的面積為:S扇形COD-S△COD=-
×
×3
=3π-
.
故答案是:3π-.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線AB與y軸交于點,與反比例函數
在第二象限內的圖象相交于點
.
(1)求直線AB的解析式;
(2)將直線AB向下平移9個單位后與反比例函數的圖象交于點C和點E,與y軸交于點D,求的面積;
(3)設直線CD的解析式為,根據圖象直接寫出不等式
的解集.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=-x2+bx+c與直線AB交于A(-4,-4),B(0,4)兩點,直線AC:y=-x-6交y軸與點C.點E是直線AB上的動點,過點E作EF⊥x軸交AC于點F,交拋物線于點G.
(1)求拋物線y=-x2+bx+c的表達式;
(2)連接GB、EO,當四邊形GEOB是平行四邊形時,求點G的坐標;
(3)①在y軸上存在一點H,連接EH、HF,當點E運動到什么位置時,以A、E、F、H為頂點的四邊形是矩形?求出此時點E、H的坐標;
②在①的前提下,以點E為圓心,EH長為半徑作圓,點M為⊙E上一動點,求AM+CM的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,AD、BD分別是△ABC的內角∠BAC、∠ABC的平分線,過點A作AE上AD,交BD的延長線于點E.
(1)求證:∠E=∠C;
(2)如圖2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;
(3)如果∠ABC是銳角,且△ABC與△ADE相似,求∠ABC的度數,并直接寫出的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某班班長統計去年1-8月“書香校園”活動中全班同學的課外閱讀數量(單位:本),繪制了如圖折線統計圖,下列說法正確的是( )
A. 平均數是58B. 眾數是42
C. 中位數是58D. 每月閱讀數量超過40的有4個月
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△AOB中,A(-8,0),B(0, ),AC平分∠OAB,交y軸于點C,點P是x軸上一點,⊙P經過點A、C,與x軸于點D,過點C作CE⊥AB,垂足為E,EC的延長線交x軸于點F,
(1)⊙P的半徑為 ;
(2)求證:EF為⊙P的切線;
(3)若點H是上一動點,連接OH、FH,當點H在
上運動時,試探究
是否為定值?若為定值,求其值;若不是定值,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:過⊙O外一點C作⊙O的切線BC,B為切點,AB是直徑,AC與⊙O交于D.
(1)若∠AOD=120°,求∠C的度數;
(2)若AD=8,sinC=,求AB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將在同一平面內如圖放置的兩塊三角板繞公共頂點A旋轉,連接BC,DE.探究S△ABC與S△ADC的比是否為定值.
(1)兩塊三角板是完全相同的等腰直角三角板時,S△ABC:S△ADE是否為定值?如果是,求出此定值,如果不是,說明理由.(圖①)
(2)一塊是等腰直角三角板,另一塊是含有30°角的直角三角板時,S△ABC:S△ADE是否為定值?如果是,求出此定值,如果不是,說明理由.(圖②)
(3)兩塊三角板中,∠BAE+∠CAD=180°,AB=a,AE=b,AC=m,AD=n(a,b,m,n為常數),S△ABC:S△ADE是否為定值?如果是,用含a,b,m,n的式子表示此定值(直接寫出結論,不寫推理過程),如果不是,說明理由.(圖③)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com