【題目】已知:如圖,在矩形紙片ABCD中,,
,翻折矩形紙片,使點A落在對角線DB上的點F處,折痕為DE,打開矩形紙片,并連接EF.
的長為多少;
求AE的長;
在BE上是否存在點P,使得
的值最?若存在,請你畫出點P的位置,并求出這個最小值;若不存在,請說明理由.
【答案】(1);(2)
的長為
;(3)存在,畫出點P的位置如圖3見解析,
的最小值為
.
【解析】
(1)根據勾股定理解答即可;
(2)設AE=x,根據全等三角形的性質和勾股定理解答即可;
(3)延長CB到點G,使BG=BC,連接FG,交BE于點P,連接PC,利用相似三角形的判定和性質解答即可.
(1)∵矩形ABCD,∴∠DAB=90°,AD=BC=3.在Rt△ADB中,DB.
故答案為:5;
(2)設AE=x.
∵AB=4,∴BE=4﹣x,在矩形ABCD中,根據折疊的性質知:
Rt△FDE≌Rt△ADE,∴FE=AE=x,FD=AD=BC=3,∴BF=BD﹣FD=5﹣3=2.在Rt△BEF中,根據勾股定理,得FE2+BF2=BE2,即x2+4=(4﹣x)2,解得:x,∴AE的長為
;
(3)存在,如圖3,延長CB到點G,使BG=BC,連接FG,交BE于點P,連接PC,則點P即為所求,此時有:PC=PG,∴PF+PC=GF.
過點F作FH⊥BC,交BC于點H,則有FH∥DC,∴△BFH∽△BDC,∴,即
,∴
,∴GH=BG+BH
.在Rt△GFH中,根據勾股定理,得:GF
,即PF+PC的最小值為
.
科目:初中數學 來源: 題型:
【題目】一個不透明的袋中裝有2個黃球,1個紅球和1個白球,除色外都相同.
(1)攪勻后,從袋中隨機出一個球,恰好是黃球的概是_____?
(2)攪勻后,從中隨機摸出兩個球,求摸到一個紅球和一個黃球的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點A在x軸負半軸上,點B在y軸正半軸上,線段OB的長是方程x2﹣2x﹣8=0的解,tan∠BAO=.
(1)求點A的坐標;
(2)點E在y軸負半軸上,直線EC⊥AB,交線段AB于點C,交x軸于點D,S△DOE=16.若反比例函數y=的圖象經過點C,求k的值;
(3)在(2)條件下,點M是DO中點,點N,P,Q在直線BD或y軸上,是否存在點P,使四邊形MNPQ是矩形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店在2014年至2016年期間銷售一種禮盒.2014年,該商店用3500元購進了這種禮盒并且全部售完;2016年,這種禮盒的進價比2014年下降了11元/盒,該商店用2400元購進了與2014年相同數量的禮盒也全部售完,禮盒的售價均為60元/盒.
(1)2014年這種禮盒的進價是多少元/盒?
(2)若該商店每年銷售這種禮盒所獲利潤的年增長率相同,問年增長率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點,
,且點B在雙曲線
上,在AB的延長線上取一點C,過點C的直線交雙曲線于點D,交x軸正半軸于點E,且
,則線段CE長度的取值范圍是
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,若干個半徑為1個單位長度,圓心角是的扇形按圖中的方式擺放,動點K從原點O出發,沿著“半徑OA
弧AB
弧BC
半徑CD
半徑DE
”的曲線運動,若點K在線段上運動的速度為每秒1個單位長度,在弧線上運動的速度為每秒
個單位長度,設第n秒運動到點K,
為自然數
,則
的坐標是____,
的坐標是____
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為2的正方形ABCD中,以B為圓心,AB為半徑作扇形ABC,交對角線BD于點E,過點E作⊙B的切線分別交AD,CD于G,F兩點,則圖中陰影部分的面積為( 。
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=﹣x+5與雙曲線(x>0)相交于A,B兩點,與x軸相交于C點,△BOC的面積是
.若將直線y=﹣x+5向下平移1個單位,則所得直線與雙曲線
(x>0)的交點有( )
A. 0個B. 1個C. 2個D. 0個,或1個,或2個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知矩形ABCD中,點E是BC邊上的點,BE=2,EC=1,AE=BC,DF⊥AE,垂足為F.則下列結論:①△ADF≌△EAB;②AF=BE;③DF平分∠ADC;④sin∠CDF=.其中正確的結論是_____.(把正確結論的序號都填上)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com