【題目】如圖,在Rt△ABC中,AC=BC,AB=10,以AB為斜邊向上作Rt△ABD,使∠ADB=90°.連接CD,若CD=7,則AD=_____.
【答案】6或8
【解析】
首先證明A,C,B,D四點共圓,再根據AC=BC,即可得出∠ADC=∠ABC=45°,作AE⊥CD于E,則△AED是等腰直角三角形,設AE=DE=x,則AD=x,在直角三角形ACE中,根據勾股定理即可求得.
如圖,∵∠ACB=∠ADB=90°,
∴A,C,B,D四點共圓,
又∵AC=BC,
∴∠BAC=∠ABC=45°,
∴∠ADC=∠ABC=45°,
作AE⊥CD于E,
∴△AED是等腰直角三角形,
設AE=DE=x,則AD=x,
∵CD=7,
∴CE=7﹣x,
∵AB=10,
∴AC=AB=5
,
在Rt△AEC中,AC2=AE2+EC2,
∴(5)2=x2+(7
﹣x)2
解得x=4或3
,
∴AD=x=8或6,
故答案為6或8.
科目:初中數學 來源: 題型:
【題目】在△ABC中,點A到直線BC的距離為d,AB>AC>d,以A為圓心,AC為半徑畫圓弧,圓弧交直線BC于點D,過點D作DE∥AC交直線AB于點E,若BC=4,DE=1,∠EDA=∠ACD,則AD=__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有七張正面分別標有數字:﹣3,﹣2,﹣1,0,1,2,3的卡片,除數字外其余全部相同,現將它們背面朝上,洗勻后從中隨機抽取一張,記卡片上的數字為m,則使關于x的方程x2﹣2(m﹣1)x+m2﹣3m=0有實數根,且不等式組無解的概率是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了節省材料,某農場主利用圍墻(圍墻足夠長)為一邊,用總長為80m的籬笆圍成了如圖所示的①②③三塊矩形區域,而且這三塊矩形區域的面積相等,則能圍成的矩形區域ABCD的面積最大值是___m2.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】體育課上,老師為了解女學生定點投籃的情況,隨機抽取8名女生進行每人4次定點投籃的測試,進球數的統計如圖所示.
(1)求女生進球數的平均數、中位數;
(2)投球4次,進球3個以上(含3個)為優秀,全校有女生1200人,估計為“優秀”等級的女生約為多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,CE是⊙O切線,C是切點,EA交弦BC于點D、交⊙O于點F,連接CF:
(1)如圖1,求證:∠ECB=∠F+90°;
(2)如圖2,連接CD,延長BA交CE于點H,當OD⊥BC、HA=HE時,求證:AB=CE;
(3)如圖3,在(2)的條件K在EF上,EH=FK,S△ADO=
,求WE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,都是等腰直角三角形,
,且
,點
在
上,連接
.
(1)如果,①求
;②若
是關于
的方程
的兩個實數根,求
的值;
(2)如圖2,將繞點
逆時針旋轉,使
,連接
,求五邊形
的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】每個小正方形都是邊長為1個單位長度的小正方形,菱形OABC在平面直角坐標系中的位置如圖所示.
(1)畫出菱形OABC關于原點O的中心對稱圖形OA1B1C1,并直接寫出點B1的坐標;
(2)將菱形OABO繞原點O順時針旋轉90°,得到菱形OA2B2C2,請畫出菱形OA2B2C2并求出點B旋轉到B2的路徑長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平行四邊形ABCD的對角線AC、BD交于點O,點E在邊CB的延長線上,且∠EAC=90°,AE2=EBEC.
(1)求證:四邊形ABCD是矩形;
(2)延長DB、AE交于點F,若AF=AC,求證:AE=BF.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com