試題分析:(1)當點D在BC的延長線上時①的結論仍成立.由正方形ADEF的性質可推出△DAB≌△FAC,所以CF=BD,∠ACF=∠ABD.結合∠BAC=90°,AB=AC,得到∠BCF=∠ACB+∠ACF=90度.即CF⊥BD.
(2)當∠ACB=45°時,過點A作AG⊥AC交CB或CB的延長線于點G,則∠GAC=90°,可推出∠ACB=∠AGC,所以AC=AG,由(1)①可知CF⊥BD.
(1)線段

之間的位置關系:互相垂直;數量關系:BD=CF;
②∵∠FAD=∠BAC=90°
∴∠BAD=∠CAF
在△BAD與△CAF中,

∴△BAD≌△CAF(SAS)
∴CF=BD,∠ACF=∠ACB=45°,
∴∠BCF=90°
∴CF⊥BD ;
(2)當∠ACB=45°時可得CF⊥BC,理由如下:
過點A作AC的垂線與CB所在直線交于G

則∵∠ACB=45°
∴AG=AC∠AGC=∠ACG=45°
∵AG=AC,AD=AF,
∵∠GAD=∠GAC-∠DAC=90°-∠DAC,∠FAC=∠FAD-∠DAC=90°-∠DAC,
∴∠GAD=∠FAC,
∴△GAD≌△CAF(SAS)
∴∠ACF=∠AGD=45°
∴∠GCF=∠GCA+∠ACF=90°
∴CF⊥BC.
點評:判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定兩個三角形全等,先根據已知條件或求證的結論確定三角形,然后再根據三角形全等的判定方法,看缺什么條件,再去證什么條件.