精英家教網 > 初中數學 > 題目詳情

【題目】如圖,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分線交AE于點O,以點O為圓心,OA為半徑的圓經過點B,交BC于另一點F.
(1)求證:CD與⊙O相切;
(2)若BF=24,OE=5,求tan∠ABC的值.

【答案】
(1)解:過點O作OG⊥DC,垂足為G.

∵AD∥BC,AE⊥BC于E,

∴OA⊥AD.

∴∠OAD=∠OGD=90°.

在△ADO和△GDO中

∴△ADO≌△GDO.

∴OA=OG.

∴DC是⊙O的切線


(2)解:如圖所示:連接OF.

∵OA⊥BC,

∴BE=EF= BF=12.

在Rt△OEF中,OE=5,EF=12,

∴OF= =13.

∴AE=OA+OE=13+5=18.

∴tan∠ABC= =


【解析】(1)過點O作OG⊥DC,垂足為G.先證明∠OAD=90°,從而得到∠OAD=∠OGD=90°,然后利用AAS可證明△ADO≌△GDO,則OA=OG=r,則DC是⊙O的切線;(2)連接OF,依據垂徑定理可知BE=EF=12,在Rt△OEF中,依據勾股定理可知求得OF=13,然后可得到AE的長,最后在Rt△ABE中,利用銳角三角函數的定義求解即可.
【考點精析】關于本題考查的梯形的定義和解直角三角形,需要了解一組對邊平行,另一組對邊不平行的四邊形是梯形.兩腰相等的梯形是等腰梯形;解直角三角形的依據:①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數的定義.(注意:盡量避免使用中間數據和除法)才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】計算:( 1+2cos30°﹣| ﹣1|+(﹣1)2017

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算題
(1)計算:|2﹣ |﹣ )+
(2)先化簡,再求值: ÷ + ,其中x=﹣

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=3,BC=4,點D,E分別在AC,BC上(點D與點A,C不重合),且∠DEC=∠A,將△DCE繞點D逆時針旋轉90°得到△DC′E′.當△DC′E′的斜邊、直角邊與AB分別相交于點P,Q(點P與點Q不重合)時,設CD=x,PQ=y.
(1)求證:∠ADP=∠DEC;
(2)求y關于x的函數解析式,并直接寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,順次連接腰長為2的等腰直角三角形各邊中點得到第1個小三角形,再順次連接所得的小三角形各邊中點得到第2個小三角形,如此操作下去,則第n個小三角形的面積為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在邊長為4的正方形ABCD中,E、F是AD邊上的兩個動點,且AE=FD,連接BE、CF、BD,CF與BD交于點G,連接AG交BE于點H,連接DH,下列結論正確的個數是( ) ①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG:S△HBG=tan∠DAG ⑤線段DH的最小值是2 ﹣2.

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在四邊形ABCD中,對角線AC、BD交于點O.若四邊形ABCD是正方形如圖1:則有AC=BD,AC⊥BD. 旋轉圖1中的Rt△COD到圖2所示的位置,AC′與BD′有什么關系?(直接寫出)
若四邊形ABCD是菱形,∠ABC=60°,旋轉Rt△COD至圖3所示的位置,AC′與BD′又有什么關系?寫出結論并證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB= ,E是BC的中點,AE⊥BD于點F,則CF的長是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC內接于⊙O,CD平分∠ACB交⊙O于D,過點D作PQ∥AB分別交CA、CB延長線于P、Q,連接BD.
(1)求證:PQ是⊙O的切線;
(2)求證:BD2=ACBQ;
(3)若AC、BQ的長是關于x的方程x+ =m的兩實根,且tan∠PCD= ,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视