【題目】計算下面各題
(1)計算: +(﹣1)2﹣4cos30°﹣|
|
(2)解不等式組 ,并將它的解集在下面的數軸上表示出來.
【答案】
(1)解:) +(﹣1)2﹣4cos30°﹣|
|
=2 +1﹣4×
﹣3
=﹣2
(2)解:解不等式①得:x≥﹣1,
解不等式②得:x<2,
故不等式組的解集為:﹣1≤x<2,
【解析】(1)分別利用有理數的乘方運算法則結合特殊角的三角函數值和絕對值的性質、二次根式的性質以及立方根的性質分別化簡求出答案;(2)分別解不等式,進而得出不等式組的解集即可.
【考點精析】認真審題,首先需要了解不等式的解集在數軸上的表示(不等式的解集可以在數軸上表示,分三步進行:①畫數軸②定界點③定方向.規律:用數軸表示不等式的解集,應記住下面的規律:大于向右畫,小于向左畫,等于用實心圓點,不等于用空心圓圈),還要掌握一元一次不等式組的解法(解法:①分別求出這個不等式組中各個不等式的解集;②利用數軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 ))的相關知識才是答題的關鍵.
科目:初中數學 來源: 題型:
【題目】一個不透明的袋里裝有2個紅球,1個白球,1個黃球,它們除顏色外其余都相同.
(1)求從袋中摸出一個球是黃球的概率.
(2)摸出一個球,記下顏色后不放回,攪拌均勻,再摸出1個球,求兩次摸出的球恰好顏色不同的概率(要求畫樹狀圖或列表).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為美化校園,計劃對面積為1800m2的區域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400m2區域的綠化時,甲隊比乙隊少用4天.
(1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?
(2)若學校每天需付給甲隊的綠化費用為0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應安排甲隊工作多少天?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,橫坐標,縱坐標都為整數的點稱為整點,正方形邊長的整點稱為邊整點,如圖,第一個正方形有4個邊整點,第二個正方形有8個邊整點,第三個正方形有12個邊整點,…,按此規律繼續作下去,若從內向外共作了5個這樣的正方形,那么其邊整點的個數共有個,這些邊整點落在函數y= 的圖象上的概率是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是二次函數y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為x= ,且經過點(2,0),有下列說法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是拋物線上的兩點,則y1=y2 . 上述說法正確的是( )
A.①②④
B.③④
C.①③④
D.①②
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知雙曲線y= ,經過點D(6,1),點C是雙曲線第三象限上的動點,過C作CA⊥x軸,過D作DB⊥y軸,垂足分別為A、B,連接AB,BC.
(1)求k的值;
(2)若△BCD的面積為12,求直線CD的表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】解答題
(1)如圖1,在△ABC中,AD是中線,分別過點B、C作AD及其延長線的垂線BE、CF,垂足分別為點E、F.求證:BE=CF.
(2)如圖2,在△ABC中,AB=2,AC=1,以AB為直徑的圓與AC相切,與邊BC交于點D,求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如表記錄了一名球員在罰球線上投籃的結果.那么,這名球員投籃一次,投中的概率約為(精確到0.1).
投籃次數(n) | 50 | 100 | 150 | 200 | 250 | 300 | 500 |
投中次數(m) | 28 | 60 | 78 | 104 | 123 | 152 | 251 |
投中頻率(m/n) | 0.56 | 0.60 | 0.52 | 0.52 | 0.49 | 0.51 | 0.50 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com