精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在中,,點、點分別在線段、線段上運動(不包含端點),以為邊作平行四邊形,點運動,速度為每秒個單位長度,點運動,速度為每秒個單位長度,兩點同時出發,當一個點到達終點時,兩點都停止運動,運動時間為秒.

1__ , __ _ (表示)

2)當平行四邊形為菱形時,求出值;

3點能否落在線段上?若能,求出的值;若不能,請說明理由.,

4)當分別與線段交于兩點時,求長度的范圍;

5)平行四邊形的面積能否為面積的一半,若能,請求出值,若不能,請說明理由.

【答案】1;(2;(3點不能落在線段上,理由詳見解析;(4;(5

【解析】

1)根據題意,直接寫出BP,BQ的值,即可;

2)根據菱形的性質,得,進而即可求解;

3)當點落在線段上時,得,得,結合,即可得到結論;

4)易得,,由,得,根據勾股定理得,結合,即可得到答案;

5)過,得,從而得,結合,得,進而列出方程,即可求解.

1)由題意得:;

2)當平行四邊形為菱形時,,

,解得:,

∴當平行四邊形為菱形時,;

3點不能落在線段上,理由如下

點落在線段上時,則,

,

,即:,

,

即當點落在線段上時,,

這與矛盾,

點不能落在線段上;

4)∵PEBC,

,

同(3)可得:,

,

APFD

,即:

,

,

,

,解得:

,

5)∵,

AC=4

,則QGAC

,

,即:,解得,

,

,

,解得:,

,

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知拋物線經過點,點,直線,直線,直線經過拋物線的頂點,且相交于點,直線軸、軸分別交于點、,若把拋物線上下平移,使拋物線的頂點在直線上(此時拋物線的頂點記為),再把拋物線左右平移,使拋物線的頂點在直線上(此時拋物線的頂點記為).

1)求拋物線的解析式.

2)判斷以點為圓心,半徑長為4的圓與直線的位置關系,并說明理由.

3)設點、在直線上(點在點的下方),當相似時,求的坐標(直接寫出結果).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若關于x的方程的解為整數,且不等式組無解,則這樣的非負整數a有(  )

A. 2個 B. 3個 C. 4個 D. 5個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一艘運沙船裝載著5000m3沙子,到達目的地后開始卸沙,設平均卸沙速度為v(單位:m3/小時),卸沙所需的時間為t(單位:小時).

1)求v關于t的函數表達式,并用列表描點法畫出函數的圖象;

2)若要求在20小時至25小時內(含20小時和25小時)卸完全部沙子,求卸沙的速度范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形內作正三角形,連接并延長交于F,則_______________,若,則長度為__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標為(0,2),頂點B恰好落在第一象限的雙曲線上,現將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應點C′的坐標為( 。

A.0B.2,0C.0D.3,0

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數的圖象經過原點及點(, ),且圖象與x軸的另一交點到原點的距離為1,求該二次函數解析式

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,點G是△ABC的重心,CG2sinACG,則BC長為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線經過點、垂直于軸,交拋物線于點,垂直于軸,垂足為,直線是該拋物線的對稱軸,點是拋物線的頂點.

(1)求出該二次函數的表達式及點的坐標;

(2)沿軸向右平移,使其直角邊與對稱軸重合,再沿對稱軸向上平移到點與點重合,得到,求此時與矩形重疊部分圖形的面積;

(3)沿軸向右平移個單位長度()得到,重疊部分圖形的面積記為,求之間的函數表達式,并寫出自變量的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视