【題目】如圖,CD是⊙O的直徑,弦AB⊥CD,垂足為點M,AB=20,分別以CM、DM為直徑作兩個大小不同的 ⊙O1和⊙O2 , 則圖中陰影部分的面積為(結果保留π).
【答案】50π
【解析】解:連接CA,DA,如圖,
∵AB⊥CD,AB=20,
∴AM=MB=10,
又∵CD為直徑,
∴∠CAD=90°,
∴∠AMC=∠DMA=90°,
∴∠C+∠CAM=90°,∠C+∠D=90°,
∴∠CAM=∠D,
∴Rt△MAC∽Rt△MDA,
∴MA:MD=MC:MA,
∴MA2=MCMD=100;
S陰影部分=S⊙O﹣S⊙1﹣S⊙2
=π CD2﹣π
CM2﹣π
DM2
=π[ CD2﹣
CM2﹣
(CD﹣CM)2],
=π( CMCD﹣
CM2),
= CMMDπ,
=50π.
所以答案是:50π.
【考點精析】解答此題的關鍵在于理解勾股定理的概念的相關知識,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對垂徑定理的理解,了解垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧.
科目:初中數學 來源: 題型:
【題目】某市中小學全面開展“陽光體育”活動,某校在大課間中開設了A:跳繩,B:跑操,C:舞蹈,D:健美操共四項活動,為了了解學生最喜歡哪一種活動,隨機抽取了部分學生進行調查,并將調查結果繪制成了如下兩幅不完整的統計圖,請根據統計圖回答下列問題:
(1)這次被調查的學生共有 人.
(2)請將條形統計圖補充完整.
(3)求出扇形統計圖中A項目對應的圓心角的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(探究)如圖①,∠AFH和∠CHF的平分線交于點O,EG經過點O且平行于FH,分別與AB、CD交于點E、G.
(1)若∠AFH=60°,∠CHF=50°,則∠EOF=_____度,∠FOH=_____度.
(2)若∠AFH+∠CHF=100°,求∠FOH的度數.
(拓展)如圖②,∠AFH和∠CHI的平分線交于點O,EG經過點O且平行于FH,分別與AB、CD交于點E、G.若∠AFH+∠CHF=α,直接寫出∠FOH的度數.(用含a的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發,設出發的時間為t秒.
(1)出發2秒后,求PQ的長;
(2)當點Q在邊BC上運動時,出發幾秒鐘后,△PQB能形成等腰三角形?
(3)當點Q在邊CA上運動時,求能使△BCQ成為等腰三角形的運動時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,彈性小球從P(2,0)出發,沿所示方向運動,每當小球碰到正方形OABC的邊時反彈,反彈時反射角等于入射角,當小球第一次碰到正方形的邊時的點為P1,第二次碰到正方形的邊時的點為P2…,第n次碰到正方形的邊時的點為Pn,則P2018的坐標是( 。
A. (5,3) B. (3,5) C. (0,2) D. (2,0)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算:
(1)4﹣8+6﹣10;
(2)(﹣
+
)×(﹣24);
(3)(﹣2)2×5﹣(﹣2.5)÷0.5;
(4)﹣32+(﹣24)÷(﹣4)﹣(﹣3)3×(﹣).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點A、B的坐標分別為A(-4,0)、B(2,0),點C在y軸上,且△ABC的面積為6,以點A、B、C為頂點作□ABCD.若過原點的直線平分該□ABCD的面積,則此直線的解析式是________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(-3,5),B(-2,1),C(-1,3).
(1)畫出△ABC關于x軸的對稱圖形△A1B1C1;
(2)畫出△A1B1C1沿x軸向右平移4個單位長度后得到的△A2B2C2;
(3)如果AC上有一點M(a,b)經過上述兩次變換,那么對應A2C2上的點M2的坐標是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲乙兩車間共120人,其中甲車間人數比乙車間人數的4倍少5人.
(1)求甲、乙兩車間各有多少人?
(2)若從甲、乙兩車間分別抽調工人,組成丙車間研制新產品,并使甲、乙、丙三個車間的人數比為13∶4∶7,那么甲、乙兩車間要分別抽調多少工人?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com