【題目】一慢車和一快車沿相同路線從A地到B地,所行的路程與時間的圖象如圖所示,試根據圖象,回答下列問題:
(1)慢車比快車早出發______小時,快車追上慢車時行駛了_____千米,快車比慢車早______小時到達B地;
(2)求慢車、快車的速度;
(3)快車追上慢車需幾個小時?
科目:初中數學 來源: 題型:
【題目】一個鋼筋三角架三邊長分別為20cm,50cm,60cm,現要再做一個與其相似的鋼筋三角架,而只有長為30cm和50cm的兩根鋼筋,要求以其中的一根為一邊,從另一根截下兩段(允許有余料)作為另兩邊,則不同的截法有( ).
A. 一種 B. 兩種 C. 三種 D. 四種
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】射擊隊為從甲、乙兩名運動員中選拔一人參加比賽,對他們進行了六次測試,測試成績如下表(單位:環):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 平均成績 | 中位數 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 | 9 | ① |
乙 | 10 | 7 | 10 | 10 | 9 | 8 | ② | 9.5 |
(注:方差公式 .)
(1)完成表中填空①;②;
(2)請計算甲六次測試成績的方差;
(3)若乙六次測試成績的方差為 ,你認為推薦誰參加比賽更合適,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀與應用:
閱讀1:a、b為實數,且a>0,b>0,因為 ,所以
,從而
(當a=b時取等號).
閱讀2:函數 (常數m>0,x>0),由閱讀1結論可知:
,所以當
即
時,函數
的最小值為
.
閱讀理解上述內容,解答下列問題:
(1)問題1:已知一個矩形的面積為4,其中一邊長為x,則另一邊長為 ,周長為
,求當x=時,周長的最小值為 .
(2)問題2:已知函數y1=x+1(x>-1)與函數y2=x2+2x+17(x>-1),當x=時, 的最小值為 .
(3)問題3:某民辦學習每天的支出總費用包含以下三個部分:一是教職工工資6400元;二是學生生活費每人10元;三是其他費用.其中,其他費用與學生人數的平方成正比,比例系數為0.01.當學校學生人數為多少時,該校每天生均投入最低?最低費用是多少元?(生均投入=支出總費用÷學生人數)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,AC、BD交于點O,BD⊥AD于點D,將△ABD沿BD翻折得到△EBD,連接EC、EB.
(1)求證:四邊形DBCE是矩形;
(2)若BD=4,AD=3,求點O到AB的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.
(1)試判斷直線AB與直線CD的位置關系,并說明理由;
(2)如圖2,∠BEF與∠EFD的角平分線交于點P,EP與CD交于點G,點H是MN上一點,且GH⊥EG,求證:PF∥GH;
(3)如圖3,在(2)的條件下,連接PH,K是GH上一點使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發生變化?若不變,請求出其值;若變化,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,的四個頂點分別為
,
,
,
.
(1)作,使它與
關于原點
成中心對稱.
(2)作的兩條對角線的交點
關于
軸的對稱點
,點
的坐標為_______.
(3)若將點向上平移
個單位,使其落在
內部(不包括邊界),則
的取值范圍是_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】制作一種產品,需先將材料加熱達到60 ℃后,再進行操作.設該材料溫度為y(℃),從加熱開始計算的時間為x(min).據了解,當該材料加熱時,溫度y與時間x成一次函數關系;停止加熱進行操作時,溫度y與時間x成反比例關系(如圖).已知該材料在操作加熱前的溫度為15 ℃,加熱5分鐘后溫度達到60 ℃.
(1)分別求出將材料加熱和停止加熱進行操作時,y與x的函數關系式;
(2)根據工藝要求,當材料的溫度低于15 ℃時,須停止操作,那么從開始加熱到停止操作,共經歷了多少時間?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com