【題目】在Rt△ABC中,∠BAC=90°,過點B的直線MN∥AC,D為BC邊上一點,連接AD,作DE⊥AD交MN于點E,連接AE.
(1)如圖①,當∠ABC=45°時,求證:AD=DE;
(2)如圖②,當∠ABC=30°時,線段AD與DE有何數量關系?并請說明理由;
(3)當∠ABC=α時,請直接寫出線段AD與DE的數量關系.(用含α的三角函數表示)
【答案】
(1)證明:如圖1,過點D作DF⊥BC,交AB于點F,
則∠BDE+∠FDE=90°,
∵DE⊥AD,
∴∠FDE+∠ADF=90°,
∴∠BDE=∠ADF,
∵∠BAC=90°,∠ABC=45°,
∴∠C=45°,
∵MN∥AC,
∴∠EBD=180°﹣∠C=135°,
∵∠BFD=45°,DF⊥BC,
∴∠BFD=45°,BD=DF,
∴∠AFD=135°,
∴∠EBD=∠AFD,
在△BDE和△FDA中
,
∴△BDE≌△FDA(ASA),
∴AD=DE
(2)解:DE= AD,
理由:如圖2,過點D作DG⊥BC,交AB于點G,
則∠BDE+∠GDE=90°,
∵DE⊥AD,
∴∠GDE+∠ADG=90°,
∴∠BDE=∠ADG,
∵∠BAC=90°,∠ABC=30°,
∴∠C=60°,
∵MN∥AC,
∴∠EBD=180°﹣∠C=120°,
∵∠ABC=30°,DG⊥BC,
∴∠BGD=60°,
∴∠AGD=120°,
∴∠EBD=∠AGD,
∴△BDE∽△GDA,
∴ =
,
在Rt△BDG中,
=tan30°=
,
∴DE= AD
(3)AD=DEtanα;
理由:如圖2,∠BDE+∠GDE=90°,
∵DE⊥AD,
∴∠GDE+∠ADG=90°,
∴∠BDE=∠ADG,
∵∠EBD=90°+α,∠AGD=90°+α,
∴∠EBD=∠AGD,
∴△EBD∽△AGD,
∴ =
,
在Rt△BDG中,
=tanα,則
=tanα,
∴AD=DEtanα
【解析】(1)首先過點D作DF⊥BC,交AB于點F,得出∠BDE=∠ADF,以及∠EBD=∠AFD,再得出△BDE≌△FDA(ASA),求出即可;(2)首先過點D作DG⊥BC,交AB于點G,進而得出∠EBD=∠AGD,證出△BDE∽△GDA即可得出答案;(3)首先過點D作DG⊥BC,交AB于點G,進而得出∠EBD=∠AGD,證出△BDE∽△GDA即可得出答案.
科目:初中數學 來源: 題型:
【題目】(1)如圖,已知點C在線段AB上,且AC=5cm,BC=3cm,點M,N分別是AC,BC的中點,求線段MN的長度.
(2)若點C是線段AB上任意一點,且AC=a,BC=b, 點M、N分別是,AC,BC的中點,請直接寫出線段MN的長度(用含a,b的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將含45°角的三角板的直角頂點R放在直線l上,分別過兩銳角的頂點M,N作l的垂線,垂足分別為P、Q,
(1)如圖1,觀察圖1可知:與NQ相等的線段是 , 與∠NPQ相等的角是 .
(2)直角△ABC中,∠B=90°,在AB邊上任取一點D,連接CD,分別以AC,DC為邊作正方形ACEF和正方形CDGH,如圖2,過E,H分別作BC所在直線的垂線,垂足分別為K,L.試探究EK與HL之間的數量關系,并證明你的結論.
(3)直角△ABC中,∠B=90°,在AB邊上任取一點D,連接CD,分別以AC,DC為邊作矩形ACEF和矩形CDGH,連接EH交BC所在的直線于點T,如圖3,如果AC=kCE,CD=kCH,試探究TE與TH之間的數量關系,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】意大利著名數學家斐波那契在研究兔子繁殖問題時,發現有這樣一組數:1,1,2,3,5,8,13,…,其中從第三個數起,每一個數都等于它前面兩個數的和.現以這組數中的各個數作為正方形的長度構造一組正方形(如下圖),再分別依次從左到右取2個,3個,4個,5個正方形拼成如下長方形并記為①,②,③,④,相應長方形的周長如下表所示:
若按此規律繼續作長方形,則序號為⑧的長方形周長是( )
A. 288 B. 178 C. 28 D. 110
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點E在CD上,將△BCE沿BE折疊,點C恰落在邊AD上的點F處;點G在AF上,將△ABG沿BG折疊,點A恰落在線段BF上的點H處,有下列結論:①∠EBG=45°;②AG+DF=FG;③△DEF∽△ABG;④S△ABG= S△FGH . 其中正確的是( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】完成下列各題:
(1)如圖,已知直線AB與⊙O相切于點C,且AC=BC,求證:OA=OB.
(2)如圖,矩形ABCD的兩條對角線相交于點O,∠AOD=120°,AB=3,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知OA⊥OB,∠AOD=∠BOC由此判定OC⊥OD,下面是推理過程,請填空.
解:∵OA⊥OB(已知)
所以_____=90°(________)
因為_____=∠AOD-∠AOC,____=∠BOC-∠AOC,∠AOD=∠BOC,
所以______=_____(等量代換)
所以______=90°
所以OC⊥OD.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com