【題目】問題情境
已知矩形的面積為S(S為常數,S>0),當該矩形的長為多少時,它的周長最?最小值是多少?
數學模型
設該矩形的長為x,周長為y,則y與x的函數關系式為y=2(x+ )(x>0)
探索研究
(1)我們可以借鑒學習函數的經驗,先探索函數y=x+ (x>0)的圖象性質.
①列表:
x | … | 1 | 2 | 3 | 4 | … | |||
y | … | m | 2 | … |
表中m=;
②描點:如圖所示;
③連線:請在圖中畫出該函數的圖象;
④觀察圖象,寫出兩條函數的性質;
(2)解決問題
在求二次函數y=ax2+bx+c(a≠0)的最大(小)值時,除了通過觀察圖象,還可以通過配方得到.同樣通過配方也可以求函數y=x+ (x>0)的最小值.
y=x+ =
+
=
+
﹣2
+2
=
+2
∵ ≥0,∴y≥2
∴當 ﹣
=0,即x=1時,y最小值=2
請類比上面配方法,直接寫出“問題情境”中的問題答案.
【答案】
(1);解:
;函數有最小值2;當x>1時,y隨x的增大而增大
(2)
y=2(x+ )=2(
﹣
)2+4
,
當 ﹣
=0時,即x=
,y有最大值4
,
所以該矩形的長為 時,它的周長最小,最小值是4
【解析】解:探索研究
①當x= 時,m=
+3=
;
③如圖,
【考點精析】通過靈活運用函數的圖象和二次函數的性質,掌握函數的圖像是由直角坐標系中的一系列點組成;圖像上每一點坐標(x,y)代表了函數的一對對應值,他的橫坐標x表示自變量的某個值,縱坐標y表示與它對應的函數值;增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小即可以解答此題.
科目:初中數學 來源: 題型:
【題目】深圳市政府計劃投資1.4萬億元實施東進戰略.為了解深圳市民對東進戰略的關注情況.某校數學興趣小組隨機采訪部分深圳市民,對采訪情況制作了統計圖表的一部分如下:
關注情況 | 頻數 | 頻率 |
A.高度關注 | M | 0.1 |
B.一般關注 | 100 | 0.5 |
C.不關注 | 30 | N |
D.不知道 | 50 | 0.25 |
(1)根據上述統計圖可得此次采訪的人數為人,m= , n=;
(2)根據以上信息補全條形統計圖;
(3)根據上述采訪結果,請估計在15000名深圳市民中,高度關注東進戰略的深圳市民約有人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC內接于⊙O,AD為邊上的高,將△ADC沿直線AC翻折得到△AEC,延長EA交⊙O于點P,連接FC,交AB于N.
(1)求證:∠BAC=∠ABC+∠ACF;
(2)求證:EF=DB;
(3)若AD=5,CD=10,CB∥AF,求點F到AB的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB=5,BC=3,D是AB的中點,點E在邊AC上,將△ADE沿DE翻折,使點A落在點A'處,當A'E⊥AC時,A'B= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,過點A(﹣ ,0)的兩條直線分別交y軸于B、C兩點,∠ABO=30°,OB=3OC.
(1)試說明直線AC與直線AB垂直;
(2)若點D在直線AC上,且DB=DC,求點D的坐標;
(3)在(2)的條件下,直線BD上是否存在點P,使以A、B、P三點為頂點的三角形是等腰三角形?若存在,請直接寫出P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,頂點為(1,4)的拋物線y=ax2+bx+c與直線y= x+n交于點A(2,2),直線y=
x+n與y軸交于點B與x軸交于點C
(1)求n的值及拋物線的解析式
(2)P為拋物線上的點,點P關于直線AB的對稱軸點在x軸上,求點P的坐標
(3)點D為x軸上方拋物線上的一點,點E為軸上一點,以A、B、E、D為頂點的四邊為平行四邊形時,直接寫出點E的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O是一點,過點B作⊙O的切線,與AC延長線交于點D,連接BC,OE//BC交⊙O于點E,連接BE交AC于點H.
(1)求證:BE平分∠ABC;
(2)連接OD,若BH=BD=2,求OD的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com