試題分析:(1)由同旁內角互補,兩直線平行證明.
(2)由∠FOC=∠AOC,并且OE平分∠BOF得到∠EOC=∠EOF+∠FOC=

(∠BOF+∠FOA)=

∠BOA,算出結果.
(3)先得出結論:∠OCB:∠OFB的值不發生變化,理由為:由BC與AO平行,得到一對內錯角相等,由∠FOC=∠AOC,等量代換得到一對角相等,再利用外角性質等量代換即可得證;
(4)由(2)(3)的結論可得.
(1)∵BC∥OA,
∴∠B+∠O=180°,又∵∠B=∠A,
∴∠A+∠O=180°,
∴OB∥AC;
(2)∵∠B+∠BOA=180°,∠B=100°,
∴∠BOA=80°,
∵OE平分∠BOF,
∴∠BOE=∠EOF,又∵∠FOC=∠AOC,
∴∠EOF+∠FOC=

(∠BOF+∠FOA)=

∠BOA=40°;
(3)結論:∠OCB:∠OFB的值不發生變化.理由為:
∵BC∥OA,
∴∠FCO=∠COA,
又∵∠FOC=∠AOC,
∴∠FOC=∠FCO,
∴∠OFB=∠FOC+∠FCO=2∠OCB,
∴∠OCB:∠OFB=1:2;
(4)由(1)知:OB∥AC,
則∠OCA=∠BOC,
由(2)可以設:∠BOE=∠EOF=α,∠FOC=∠COA=β,
則∠OCA=∠BOC=2α+β,
∠OEB=∠EOC+∠ECO=α+β+β=α+2β,
∵∠OEC=∠OCA,
∴2α+β=α+2β,
∴α=β,
∵∠AOB=80°,
∴α=β=20°,
∴∠OCA=2α+β=40°+20°=60.