精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在⊙O中,B,PA,C是圓上的點,PB= PC, PDCDCD交⊙OA,若AC=AD,PD =,sinPAD =,PAB的面積為_______

【答案】2

【解析】分析: 連接PC PB PA,過PBA垂線于H點,根據PB=PC,再由全等三角形的判定定理可得出△PBH≌△PCD,Rt△PHA≌Rt△PDA,根據AC=AD=1即可得出結論.

詳解: 連接PC PB PA,過PBA垂線于H,

PDCD, PD =,sinPAD =

AP=,AD=1,

AC=AD,

∴CD=2.

在△PBH與△PCD中,

∠B=∠C

PB=PC

∠BPH=∠DPC,

∴△PBH≌△PCD(ASA),

BH=CD=2,PH=PD=,

AH=

PAB的面積為AB×PH×=(2+1)××=2,

故答案為:2.

點睛:

本題考查的是圓周角定理及全等三角形的判定與性質,根據題意作出輔助線,構造出全等三角形是解答此題的關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】現代互聯網技術的廣泛應用,催生了快遞行業的高速發展,據調查,某家快遞公司,今年三月份與五月份完成投遞的快件總件數分別是5萬件和萬件,現假定該公司每月投遞的快件總件數的增長率相同.

求該公司投遞快件總件數的月平均增長率;

如果平均每人每月可投遞快遞萬件,那么該公司現有的16名快遞投遞員能否完成今年6月份的快遞投遞任務?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了落實黨的精準扶貧政策,A、B兩城決定向CD兩鄉運送肥料以支持農村生產,已知A、B兩城共有肥料500噸,其中A城肥料比B城少100噸,從A城往C、D兩鄉運肥料的費用分別為20/噸和25/噸:從B城往C,D兩鄉運肥料的費用分別為15/噸和24/噸,現C鄉需要肥料240噸,D鄉需要肥料260噸.

1A城和B城各有多少噸肥料?

2)設從A城運往C鄉肥料x噸,總運費為y元,求yx的函數關系式.

3)怎樣調運才能使總運費最少?并求最少運費.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】規定:[x]表示不大于x 的最整數,(x) 表示不小于x的最小整數,[x) 表示最接近x的整數(xn+0.5,n為整數),例如:[2.3]=2,(2.3)=3[2.3)=2,則下列說法正確的是__________(寫出所有正確說法).

①當x=1.7時,[x]+(x)+[x)=6

②當x=-2.1時,[x]+(x)+[x)=-7

③方程4[x]+3(x)+[x)=11的解為1<x<1.5;

④當-1<x<1, 函數y=[x]+(x)+x 的圖像y=4x 的圖像有兩個交點.

【答案】②③

【解析】分析:1)根據題目中給的計算方法代入計算后判定即可;(2)根據題目中給的計算方法代入計算后判定即可;(3)根據題目中給的計算方法代入計算后判定即可;(4)結合x的取值范圍,分類討論,利用題目中給出的方法計算后判定即可.

詳解:

x=1.7時,

[x]+x+[x

=[1.7]+1.7+[1.7=1+2+2=5,故錯誤;

x=﹣2.1時,

[x]+x+[x

=[﹣2.1]+﹣2.1+[﹣2.1

=﹣3+﹣2+﹣2=﹣7,故正確;

1x1.5時,

4[x]+3x+[x

=4×1+3×2+1

=4+6+1

=11,故正確;

④∵﹣1x1時,

當﹣1x﹣0.5時,y=[x]+x+x=﹣1+0+x=x﹣1

當﹣0.5x0時,y=[x]+x+x=﹣1+0+x=x﹣1,

x=0時,y=[x]+x+x=0+0+0=0,

0x0.5時,y=[x]+x+x=0+1+x=x+1,

0.5x1時,y=[x]+x+x=0+1+x=x+1,

y=4x,則x1=4x時,得x=;x+1=4x時,得x=;當x=0時,y=4x=0,

當﹣1x1時,函數y=[x]+x+x的圖象與正比例函數y=4x的圖象有三個交點,故錯誤,

故答案為:②③

點睛:本題是閱讀理解題,前三問比較容易判定,根據題目所給的方法判定即可;第四問較難,結合x的取值范圍分情況討論即可.

型】填空
束】
19

【題目】先化簡再求值: ,其中 .

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算:

1)﹣23÷4|3|+5×

2)先化簡,再求值:(﹣4x2+2x8)﹣(x1),其中x

3)解方程:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,長方形紙片ABCD,點E、F分別在邊AB、CD上,連接EF.將∠BEF對折,點B落在直線EF上的點B′處,得到折痕EC;將∠AEF對折,點A落在直線EF上的點A′處,得到折痕EN

1)若∠BEB′=110°,則∠BEC   °,∠AEN   °,∠BEC+AEN   °.

2)若∠BEB′=m°,則(1)中∠BEC+AEN的值是否改變?請說明你的理由.

3)將∠ECF對折,點E剛好落在F處,且折痕與BC重合,求∠AEN的度數.(提示,長方形的四個角都是90°)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校八年級學生小麗、小強和小紅到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作.已知該水果的進價為8/千克,下面是他們在活動結束后的對話.

小麗:如果以10/千克的價格銷售,那么每天可售出300千克.

小強:如果每千克的利潤為3元,那么每天可售出250千克.

小紅:如果以13/千克的價格銷售,那么每天可獲取利潤750元.

【利潤=(銷售價-進價)銷售量】

1)請根據他們的對話填寫下表:

銷售單價x(元/kg

10

11

13

銷售量ykg




2)請你根據表格中的信息判斷每天的銷售量y(千克)與銷售單價x(元)之間存在怎樣的函數關系.并求y(千克)與x(元)(x0)的函數關系式;

3)設該超市銷售這種水果每天獲取的利潤為W元,求Wx的函數關系式.當銷售單價為何值時,每天可獲得的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在中,點的中點,點是線段的延長線上的一動點,連接,過點的平行線,與線段的延長線交于點,連接、

求證:四邊形是平行四邊形.

,,則在點的運動過程中:

①當________時,四邊形是矩形,試說明理由;

②當________時,四邊形是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABDC,ABAD,對角線AC,BD交于點O,AC平分BAD,過點CCEABAB的延長線于點E,連接OE

(1)求證:四邊形ABCD是菱形;

(2)若ABBD=2,求OE的長.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视