【題目】用各種盛水容器可以制作精致的家用流水景觀(如圖1).
科學原理:如圖2,始終盛滿水的圓體水桶水面離地面的高度為H(單位:m),如果在離水面豎直距離為h(單校:cm)的地方開大小合適的小孔,那么從小孔射出水的射程(水流落地點離小孔的水平距離)s(單位:cm)與h的關系為s2=4h(H—h).
應用思考:現用高度為20cm的圓柱體望料水瓶做相關研究,水瓶直立地面,通過連注水保證它始終盛滿水,在離水面豎直距高h cm處開一個小孔.
(1)寫出s2與h的關系式;并求出當h為何值時,射程s有最大值,最大射程是多少?
(2)在側面開兩個小孔,這兩個小孔離水面的豎直距離分別為a,b,要使兩孔射出水的射程相同,求a,b之間的關系式;
(3)如果想通過墊高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔離水面的豎直距離.
【答案】(1),當
時,
;(2)
或
;(3)墊高的高度為16cm,小孔離水面的豎直距離為18cm
【解析】
(1)將s2=4h(20-h)寫成頂點式,按照二次函數的性質得出s2的最大值,再求s2的算術平方根即可;
(2)設存在a,b,使兩孔射出水的射程相同,則4a(20-a)=4b(20-b),利用因式分解變形即可得出答案;
(3)設墊高的高度為m,寫出此時s2關于h的函數關系式,根據二次函數的性質可得答案.
解:(1)∵s2=4h(H-h),
∴當H=20時,s2=4h(20-h)=-4(h-10)2+400,
∴當h=10時,s2有最大值400,
∴當h=10時,s有最大值20cm.
∴當h為何值時,射程s有最大值,最大射程是20cm;
故答案為:最大射程是20cm.
(2) ∵s2=4h(20-h),
設存在a,b,使兩孔射出水的射程相同,則有:
4a(20-a)=4b(20-b),
∴20a-a2=20b-b2,
∴a2-b2=20a-20b,
∴(a+b)(a-b)=20(a-b),
∴(a-b)(a+b-20)=0,
∴a-b=0或a+b-20=0,
∴a=b或a+b=20.
故答案為:a=b或a+b=20.
(3)設墊高的高度為m,則
∴當時,
∴時,此時
∴墊高的高度為16cm,小孔離水面的豎直距離為18cm.
故答案為:墊高的高度為16cm,小孔離水面的豎直距離為18cm.
科目:初中數學 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+4x+c經過原點O(0,0)和點A (3,3),P為拋物線上的一個動點,過點P作x軸的垂線,垂足為B(m,0),并與直線OA交于點C.
(1)求拋物線的解析式;
(2)當點P在直線OA上方時,求線段PC的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,AG∥DB交CB的延長線于G.
(1)求證:△ADE≌△CBF;
(2)若四邊形 BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校為了豐富學生課余生活,決定開設以下體育課外活動項目:A籃球;B乒乓球;C羽毛球;D足球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統計圖,請回答下列問題:
(1)這次被調查的學生共有__________人;
(2)請你將條形統計圖(1)補充完整;
(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現優秀,現決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】人字折疊梯完全打開后如圖1所示,B,C是折疊梯的兩個著地點,D是折疊梯最高級踏板的固定點.圖2是它的示意圖,AB=AC,BD=140cm,∠BAC=40°,求點D離地面的高度DE.(結果精確到0.1cm;參考數據sin70°≈0. 94,cos70°≈0.34,sin20°≈0.34,cos20°≈0.94)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學舉行鋼筆書法大賽,對各年級同學的獲獎情況進行了統計,并繪制了如下兩幅不完整的統計圖.
請結合圖中相關信息解答下列問題:
(1)扇形統計圖中三等獎所在扇形的圓心角的度數是______度;
(2)請將條形統計圖補全;
(3)獲得一等獎的同學中有來自七年級,有
來自九年級,其他同學均來自八年級.現準備從獲得一等獎的同學中任選2人參加市級鋼筆書法大賽,請通過列表或畫樹狀圖的方法求所選出的2人中既有八年級同學又有九年級同學的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A,B為反比例函數y=在第一象限上的兩點,AC⊥y軸于點C,BD⊥x軸于點D,若B點的橫坐標是A點橫坐標的一半,且圖中陰影部分的面積為k﹣2,則k的值為( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=4,∠CAB=30°,以AB的中點為圓心,OA的長為半徑作半圓交AC于點D,則圖中陰影部分的面積為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某地為了促進旅游業的發展,要在如圖所示的三條公路,
,
圍成的一塊地上修建一個度假村,要使這個度假村到
,
兩條公路的距離相等,且到
,
兩地的距離相等,下列選址方法繪圖描述正確的是( )
A.畫的平分線,再畫線段
的垂直平分線,兩線的交點符合選址條件
B.先畫和
的平分線,再畫線段
的垂直平分線,三線的交點符合選址條件
C.畫三個角,
和
三個角的平分線,交點即為所求
D.畫,
,
三條線段的垂直平分線,交點即為所求
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com