【題目】在△ABC中,AB=AC,∠BAC=100°,點D在BC邊上,△ABD和△AFD關于直線AD對稱,∠FAC的平分線交BC于點G,連接FG.
(1)求∠DFG的度數;
(2)設∠BAD=θ, ①當θ為何值時,△DFG為等腰三角形;
②△DFG有可能是直角三角形嗎?若有,請求出相應的θ值;若沒有,請說明理由.
【答案】
(1)解:∵AB=AC,∠BAC=100°,
∴∠B=∠C=40°.
∵△ABD和△AFD關于直線AD對稱,
∴△ADB≌△ADF,
∴∠B=∠AFD=40°,AB=AF∠BAD=∠FAD=θ,
∴AF=AC.
∵AG平分∠FAC,
∴∠FAG=∠CAG.
在△AGF和△AGC中,
,
∴△AGF≌△AGC(SAS),
∴∠AFG=∠C.
∵∠DFG=∠AFD+∠AFG,
∴∠DFG=∠B+∠C=40°+40°=80°.
答:∠DFG的度數為80°
(2)解:①當GD=GF時,
∴∠GDF=∠GFD=80°.
∵∠ADG=40°+θ,
∴40°+80°+40°+θ+θ=180°,
∴θ=10°.
當DF=GF時,
∴∠FDG=∠FGD.
∵∠DFG=80°,
∴∠FDG=∠FGD=50°.
∴40°+50°+40°+2θ=180°,
∴θ=25°.
當DF=DG時,
∴∠DFG=∠DGF=80°,
∴∠GDF=20°,
∴40°+20°+40°+2θ=180°,
∴θ=40°.
∴當θ=10°,25°或40°時,△DFG為等腰三角形;
②當∠GDF=90°時,
∵∠DFG=80°,
∴40°+90°+40°+2θ=180°,
∴θ=5°.
當∠DGF=90°時,
∵∠DFG=80°,
∴∠GDF=10°,
∴40°+10°+40°+2θ=180°,
∴θ=45°
∴當θ=5°或45°時,△DFG為直角三角形
【解析】(1)由軸對稱可以得出△ADB≌△ADF,就可以得出∠B=∠AFD,AB=AF,在證明△AGF≌△AGC就可以得出∠AFG=∠C,就可以求出∠DFG的值;(2)①當GD=GF時,就可以得出∠GDF═80°,根據∠ADG=40+θ,就有40°+80°+40°+θ+θ=180°就可以求出結論;當DF=GF時,就可以得出∠GDF=50°,就有40°+50°+40°+2θ=180°,當DF=DG時,∠GDF=20°,就有40°+20°+40°+2θ=180°,從而求出結論; ②有條件可以得出∠DFG=80°,當∠GDF=90°時,就有40°+90°+40°+2θ=180°就可以求出結論,當∠DGF=90°時,就有∠GDF=10°,得出40°+10°+40°+2θ=180°求出結論.
科目:初中數學 來源: 題型:
【題目】如圖,一枚質地均勻的正四面體骰子,它有四個面并分別標有數字
,
,
,
,如圖
,正方形
頂點處各有一個圈.跳圈游戲的規則為:游戲者每擲一次骰子,骰子著地一面上的數字是幾,就沿正方形的邊順時針方向連續跳幾個邊長.如:若從圖
起跳,第一次擲得
,就順時針連續跳
個邊長,落到圈
;若第二次擲得
,就從
開始順時針連續跳
個邊長,落到圈
;
設游戲者從圈
起跳.
()嘉嘉隨機擲一次骰子,求落回到圈
的概率
.
()淇淇隨機擲兩次骰子,用列表法求最后落回到圈
的概率
,并指出她與嘉嘉落回到圈
的可能性一樣嗎?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,AB的垂直平分線交邊AB于D點,交邊AC于E點,若△ABC與△EBC的周長分別是40cm,24cm,則AB=cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過點B作射線BB1∥AC.動點D從點A出發沿射線AC方向以每秒5個單位的速度運動,同時動點E從點C沿射線AC方向以每秒3個單位的速度運動.過點D作DH⊥AB于H,過點E作EF⊥AC交射線BB1于F,G是EF中點,連接DG.設點D運動的時間為t秒.
(1)當t為何值時,AD=AB,并求出此時DE的長度;
(2)當△DEG與△ACB相似時,求t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,OE平分∠BOD,OF平分∠COE,∠AOD:∠BOE=4:1,則∠AOF的度數為( )
A.120°
B.125°
C.130°
D.135°
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com