【題目】在△ABC中,點D,E分別在AB,AC上,且CD與BE相交于點F,已知△BDF的面積為6,△BCF的面積為9,△CEF的面積為6,則四邊形ADFE的面積為 .
【答案】24
【解析】解:如圖,連AF,設S△ADF=m, ∵S△BDF:S△BCF=6:9=2:3=DF:CF,
則有 m=S△AEF+S△EFC ,
S△AEF= m﹣6,
而S△BFC:S△EFC=9:6=3:2=BF:EF,
又∵S△ABF:S△AEF=BF:EF=3:2,
而S△ABF=m+S△BDF=m+6,
∴S△ABF:S△AEF=BF:EF=3:2=(m+6):( m﹣6),
解得m=12.
S△AEF=12,
SADEF=S△AEF+S△ADF=12+12=24.
故答案為:24.
可設S△ADF=m,根據題中條件可得出三角形的面積與邊長之間的關系,進而用m表示出△AEF,求出m的值,進而可得四邊形的面積.
科目:初中數學 來源: 題型:
【題目】秋季新學期開學時,紅城中學對七年級新生掌握“中學生日常行為規范”的情況進行了知識測試,測試成績全部合格,現學校隨機選取了部分學生的成績,整理并制作成了如下不完整的圖表:
分 數 段 | 頻數 | 頻率 |
60≤x<70 | 9 | a |
70≤x<80 | 36 | 0.4 |
80≤x<90 | 27 | b |
90≤x≤100 | c | 0.2 |
請根據上述統計圖表,解答下列問題:
(1)在表中,a= , b= , c=;
(2)補全頻數直方圖;
(3)根據以上選取的數據,計算七年級學生的平均成績.
(4)如果測試成績不低于80分者為“優秀”等次,請你估計全校七年級的800名學生中,“優秀”等次的學生約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在正方形ABCD中,F是AB上一點,延長CB到E,使BE=BF,連接CF并延長交AE于G.
(1)求證:△ABE≌△CBF;
(2)將△ABE繞點A逆時針旋轉90°得到△ADH,請判斷四邊形AFCH是什么特殊四邊形,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將九年級部分男生擲實心球的成績進行整理,分成5個小組(x表示成績,單位:米).A組:5.25≤x<6.25;B組:6.25≤x<7.25;C組:7.25≤x<8.25;D組:8.25≤x<9.25;E組:9.25≤x<10.25,并繪制出扇形統計圖和頻數分布直方圖(不完整).規定x≥6.25為合格,x≥9.25為優秀.
(1)這部分男生有多少人?其中成績合格的有多少人?
(2)這部分男生成績的中位數落在哪一組?扇形統計圖中D組對應的圓心角是多少度?
(3)要從成績優秀的學生中,隨機選出2人介紹經驗,已知甲、乙兩位同學的成績均為優秀,求他倆至少有1人被選中的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】當m,n是實數且滿足m﹣n=mn時,就稱點Q(m, )為“奇異點”,已知點A、點B是“奇異點”且都在反比例函數y=
的圖象上,點O是平面直角坐標系原點,則△OAB的面積為( )
A.1
B.
C.2
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知反比例函數y1= 與一次函數y2=k2x+b的圖象交于點A(1,8),B(﹣4,m)兩點.
(1)求k1 , k2 , b的值;
(2)求△AOB的面積;
(3)請直接寫出不等式 x+b的解.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖四邊形ABCD中,AD=DC,∠DAB=∠ACB=90°,過點D作DF⊥AC,垂足為F.DF與AB相交于E.設AB=15,BC=9,P是射線DF上的動點.當△BCP的周長最小時,DP的長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的口袋里裝有分別標有漢字“幸”、“!薄ⅰ皾、“寧”的四個小球,除漢字不同之外,小球沒有任何區別,每次摸球前先攪拌均勻再摸球.
(1)若從中任取一個球,球上的漢字剛好是“!钡母怕蕿槎嗌?
(2)小穎從中任取一球,記下漢字后放回袋中,然后再從中任取一球,求小穎取出的兩個球上漢字恰能組成“幸福”或“濟寧”的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com