精英家教網 > 初中數學 > 題目詳情
(2011•錦州)如圖,菱形ABCD的邊長為4cm,DE垂直平分AB,則菱形的面積是
8
3
cm2
8
3
cm2
分析:連接BD,則三角形ABD為等邊三角形,根據直角三角形的性質得DE的長,再由面積公式進行計算即可.
解答:解:連接BD,
∵DE垂直平分AB,
∴△ABD為等邊三角形,
∴∠ADE=30°,
∵AD=4cm,
∴DE=2
3
cm,
∴S菱形ABCD=4×2
3
=8
3
cm2
點評:本題考查了菱形的性質、線段垂直平分線的性質以及勾股定理,是基礎知識要熟練掌握.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2011•錦州)如圖,四邊形ABCD,M為BC邊的中點.若∠B=∠AMD=∠C=45°,AB=8,CD=9,則AD的長為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2011•錦州)如圖,AB是⊙O的直徑,BD是⊙O的切線,∠D=32°,則∠A=
29°
29°

查看答案和解析>>

科目:初中數學 來源: 題型:

(2011•錦州)如圖所示,在邊長為1個單位的正方形網格中建立平面直角坐標系,△ABC的頂點均在格點上.
(1)畫出△ABC關于y軸對稱的△A1B1C1;
(2)將△A1B1C1向下平移3個單位,畫出平移后的△A2B2C2;
(3)將△A2B2C2繞點C2順時針旋轉90°,畫出旋轉后的△A3B3C2;并直接寫出點A3、B3的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2011•錦州)如圖,在△ABC中,D為AB上一點,⊙O經過B、C、D三點,∠COD=90°,∠ACD=∠BCO+∠BDO.
(1)求證:直線AC是⊙O的切線;
(2)若∠BCO=15°,⊙O的半徑為2,求BD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2011•錦州)如圖,小明站在窗口向外望去,發現樓下有一棵傾斜的大樹,在窗口C處測得大樹頂部A的俯角為45°,若已知∠ABD=60°,CD=20m,BD=16m,請你幫小明計算一下,如果大樹倒在地面上,其頂端A與樓底端D的距離是多少米?(結果保留整數,參考數據:
2
≈1.414,
3
≈1.732).

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视