【題目】某校為了了解本校七年級學生課外閱讀的喜好,隨機抽取該校七年級部分學生進行問卷調査(每人只選一種書籍).如圖是整理數據后繪制的兩幅不完整的統計圖,請你根據圖中提供的信息,解答下列問題:
(1)這次活動一共調查了______名學生;
(2)在扇形統計圖中,“其他“所在扇形的圓心角等于______度;
(3)補全條形統計圖;
科目:初中數學 來源: 題型:
【題目】某市教育行政部門為了了解初一學生每學期參加綜合實踐活動的情況,隨機抽樣調查了某校初一學生一個學期參加綜合實踐活動的天數,并用得到的數據繪制了下面兩幅不完整的統計圖(如圖).
請你根據圖中提供的信息,回答下列問題:
(1)求出扇形統計圖中a的值,并求出該校初一學生總數;
(2)分別求出活動時間為5天、7天的學生人數,并補全頻數分布直方圖;
(3)求出扇形統計圖中“活動時間為4天”的扇形所對圓心角的度數;
(4)在這次抽樣調查中,眾數和中位數分別是多少?
(5)如果該市共有初一學生6000人,請你估計“活動時間不少于4天”的大約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在如圖所示的單位正方形網格中,△ABC經過平移后得到△A1B1C1,已知在AC上一點P(2.4,2)平移后的對應點為P1,點P1繞點O逆時針旋轉180°,得到對應點P2,則P2點的坐標為
A.(1.4,-1) B.(1.5,2) C.(1.6,1) D.(2.4,1)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場為了吸引顧客,設計了一種促銷活動:在四等分的轉盤上依次標有“0元”、“10元”、“30元”、“50元”字樣,購物每滿300元可以轉動轉盤2次,每次轉盤停下后,顧客可以獲得指針所指區域相應金額的購物券指針落在分界線上不計次數,可重新轉動一次
,一個顧客剛好消費300元,并參加促銷活動,轉了2次轉盤.
求出該顧客可能落得購物券的最高金額和最低金額;
請用列表法或畫樹狀圖法求出該顧客獲購物金額不低于50元的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數學問題:用邊長相等的正三角形、正方形和正六邊形能否進行平面圖形的鑲嵌?
問題探究:為了解決上述數學問題,我們采用分類討論的思想方法去進行探究.
探究一:從正三角形、正方形和正六邊形中任選一種圖形,能否進行平面圖形的鑲嵌?
第一類:選正三角形.因為正三角形的每一個內角是60°,所以在鑲嵌平面時,圍繞某一點有6個正三角形的內角可以拼成一個周角,所以用正三角形可以進行平面圖形的鑲嵌.
第二類:選正方形.因為正方形的每一個內角是90°,所以在鑲嵌平面時,圍繞某一點有4個正方形的內角可以拼成一個周角,所以用正方形也可以進行平面圖形的鑲嵌.
第三類:選正六邊形.(仿照上述方法,寫出探究過程及結論)
探究二:從正三角形、正方形和正六邊形中任選兩種圖形,能否進行平面圖形的鑲嵌?
第四類:選正三角形和正方形
在鑲嵌平面時,設圍繞某一點有x個正三角形和y個正方形的內角可以拼成個周角.根據題意,可得方程
60x+90y=360
整理,得2x+3y=12.
我們可以找到唯一組適合方程的正整數解為.
鑲嵌平面時,在一個頂點周圍圍繞著3個正三角形和2個正方形的內角可以拼成一個周角,所以用正三角形和正方形可以進行平面鑲嵌
第五類:選正三角形和正六邊形.(仿照上述方法,寫出探究過程及結論)
第六類:選正方形和正六邊形,(不寫探究過程,只寫出結論)
探究三:用正三角形、正方形和正六邊形三種圖形是否可以鑲嵌平面?
第七類:選正三角形、正方形和正六邊形三種圖形.(不寫探究過程,只寫結論),
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】七年級開展演講比賽,學校決定購買一些筆記本和鋼筆作為獎品.現有甲、乙兩家商店出售兩種同樣的筆記本和鋼筆.他們的定價相同:筆記本定價為每本25元,鋼筆每支定價6元,但是他們的優惠方案不同,甲店每買一本筆記本贈一支鋼筆;乙店全部按定價的9折優惠.已知七年級需筆記本20本,鋼筆x支(大于20支).問:
(1)在甲店購買需付款 元,在乙店購買需付款 元;
(2)若x=30,通過計算說明此時到哪家商店購買較為合算?
(3)當x=40時,請設計一種方案,使購買最省錢?算出此時需要付款多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】教材母題 點P(x,y)在第一象限,且x+y=8,點A的坐標為(6,0).設△OPA的面積為S.
(1)用含有x的式子表示S,寫出x的取值范圍,畫出函數S的圖象;
(2)當點P的橫坐標為5時,△OPA的面積為多少?
(3)△OPA的面積能大于24嗎?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“中華人民共和國道路交通管理條例”規定:小汽車在城街路上行駛速度不得超過km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路對面車速檢測儀正前方
m處,過了2s后,測得小汽車與車速檢測儀間距離為
m,這輛小汽車超速了嗎?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】學校食堂廚房的桌子上整齊地擺放著若干相同規格的碟子,碟子的個數與碟子的高度的關系如下表:
碟子的個數 | 碟子的高度(單位:cm) |
1 | 2 |
2 | 2+1.5 |
3 | 2+3 |
4 | 2+4.5 |
… | … |
(1)當桌子上放有x(個)碟子時,請寫出此時碟子的高度(用含x的式子表示);
(2)分別從三個方向上看,其三視圖如上圖所示,廚房師傅想把它們整齊疊成一摞,求疊成一摞后的高度.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com