【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點C,與AB的延長線交于D.
(1)求證:△ADC∽△CDB;
(2)若AC=2,AB= CD,求⊙O半徑.
【答案】
(1)證明:如圖,連接CO,
,
∵CD與⊙O相切于點C,
∴∠OCD=90°,
∵AB是圓O的直徑,
∴∠ACB=90°,
∴∠ACO=∠BCD,
∵∠ACO=∠CAD,
∴∠CAD=∠BCD,
在△ADC和△CDB中,
∴△ADC∽△CDB.
(2)解:設CD為x,
則AB= x,OC=OB=
x,
∵∠OCD=90°,
∴OD= =
=
x,
∴BD=OD﹣OB= x﹣
x=
x,
由(1)知,△ADC∽△CDB,
∴ =
,
即 ,
解得CB=1,
∴AB= =
,
∴⊙O半徑是
【解析】(1)首先連接CO,根據CD與⊙O相切于點C,可得:∠OCD=90°;然后根據AB是圓O的直徑,可得:∠ACB=90°,據此判斷出∠CAD=∠BCD,即可推得△ADC∽△CDB.(2)首先設CD為x,則AB= x,OC=OB=
x,用x表示出OD、BD;然后根據△ADC∽△CDB,可得:
=
,據此求出CB的值是多少,即可求出⊙O半徑是多少.
【考點精析】利用切線的性質定理對題目進行判斷即可得到答案,需要熟知切線的性質:1、經過切點垂直于這條半徑的直線是圓的切線2、經過切點垂直于切線的直線必經過圓心3、圓的切線垂直于經過切點的半徑.
科目:初中數學 來源: 題型:
【題目】如圖,小明晚上由路燈A下的點B處走到點C處時,測得自身影子CD的長為1米,他繼續往前走3米到達點E處(即CE=3米),測得自己影子EF的長為2米,已知小明的身高是1.5米,那么路燈A的高度AB是( )
A.4.5米
B.6米
C.7.2米
D.8米
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著互聯網的發展,互聯網消費逐漸深入人們的生活,如圖所示的是“滴滴順風車”與“滴滴快車”的行駛里程x(公里)與計費y(元)之間的函數關系圖象,有下列說法:其中正確說法的個數有( ) ①“快車”行駛里程不超過5公里計費8元;
②“順風車”行駛里程超過2公里的部分,每公里計費1.2元;
③A點的坐標為(6.5,10.4);
④從合肥西站到會展中心的里程是15公里,則“順風車”要比“快車”少用3.4元.
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點C在⊙O上,點P是直徑AB上的一點(不與A重合),過點P作AB的垂線交BC于點Q.
(1)在線段PQ上取一點D,使DQ=DC,連接DC,試判斷CD與⊙O的位置關系,并說明理由.
(2)若cosB= ,BP=6,AP=1,求QC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c過點(﹣1,0),且對稱軸為直線x=1,有下列結論: ①abc<0;②10a+3b+c>0;③拋物線經過點(4,y1)與點(﹣3,y2),則y1>y2;④無論a,b,c取何值,拋物線都經過同一個點(﹣ ,0);⑤am2+bm+a≥0,其中所有正確的結論是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列命題中,假命題有( ) ①兩點之間線段最短;②到角的兩邊距離相等的點在角的平分線上;
③過一點有且只有一條直線與已知直線平行;④垂直于同一直線的兩條直線平行;
⑤若⊙O的弦AB,CD交于點P,則PAPB=PCPD.
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,物理教師為同學們演示單擺運動,單擺左右擺動中,在OA的位置時俯角∠EOA=30°,在OB的位置時俯角∠FOB=60°,若OC⊥EF,點A比點B高7cm.求:
(1)單擺的長度( ≈1.7);
(2)從點A擺動到點B經過的路徑長(π≈3.1).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A是反比例函數y=﹣ 的圖象上的一個動點,連接OA,若將線段O A繞點O順時針旋轉90°得到線段OB,則點B所在圖象的函數表達式為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com