【題目】在平面直角坐標系xOy中,直線y=x與雙曲線y=(k>0,x>0)交于點A.過點A作AC⊥x軸于點C,過雙曲線上另一點B作BD⊥x軸于點D,作BE⊥AC于點E,連接AB.若OD=3OC,則tan∠ABE=______.
科目:初中數學 來源: 題型:
【題目】如圖1,△ABC的邊BC在直線l上,AC⊥BC,且AC=BC;△EFP的邊FP也在直線l上,邊EF與邊AC重合,且EF=FP.
(1)將△EFP沿直線l向左平移到圖2的位置時,EP交AC于點Q,連接AP,BQ.猜想并寫出BQ與AP所滿足的數量關系,請證明你的猜想;
(2)將△EFP沿直線l向左平移到圖3的位置時,EP的延長線交AC的延長線于點Q,連接AP,BQ.你認為(1)中所猜想的BQ與AP的數量關系還成立嗎?若成立,給出證明;若不成立,請說明理由;
(3)若AC=BC=4,設△EFP平移的距離為x,當0≤x≤8時,△EFP與△ABC重疊部分的面積為S,請寫出S與x之間的函數關系式,并求出最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=3,BC=4,∠ABC=90°,過B作A1B⊥AC,過A1作A1B1⊥BC,得陰影Rt△A1B1B;再過B1作B1A2⊥AC,過A2作A2B2⊥BC,得陰影Rt△A2B2B1;…如此下去.請猜測這樣得到的所有陰影三角形的面積之和為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的頂點B的坐標為(4,2),直線y=﹣x+
與邊AB,BC分別相交于點M,N,函數y=
(x>0)的圖象過點M.
(1)試說明點N也在函數y=(x>0)的圖象上;
(2)將直線MN沿y軸的負方向平移得到直線M′N′,當直線M′N′與函數y═(x>0)的圖象僅有一個交點時,求直線M'N′的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“安全教育”是學校必須開展的一項重要工作.某校為了了解家長和學生參與“暑期安全知識學習”的情況,進行了網上測試,并在本校學生中隨機抽取部分學生進行調查.若把參與測試的情況分為類情形:
.僅學生自己參與;
.家長和學生一起參與;
.僅家長自己參與;
.家長和學生都未參與.根據調查情況,繪制了以下不完整的統計圖.請根據圖中提供的信息,解答下列問題:
在這次抽樣調查中,共調查了 名學生;
補全條形統計圖,并計算扇形統計圖中
類所對應扇形的圓心角的度數;
根據抽樣調查結果,估計該校
名學生中“家長和學生都未參與”的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某村啟動“脫貧攻堅”項目,根據當地的地理條件,要在一座高為1000m的上種植一種經濟作物.農業技術人員在種植前進行了主要相關因素的調查統計,結果如下:
①這座山的山腳下溫度約為22°C,山高h(單位:m)每增加100m,溫度T(單位:°C)下降約0.5°C;
②該作物的種植成活率p受溫度T影響,且在19°C時達到最大.大致如表:
溫度T°C | 21 | 20.5 | 20 | 19.5 | 19 | 18.5 | 18 | 17.5 |
種植成活率p | 90% | 92% | 94% | 96% | 98% | 96% | 94% | 92% |
③該作物在這座山上的種植量w受山高h影響,大致如圖1:
(1)求T關于h的函數解析式,并求T的最小值;
(2)若要求該作物種植成活率p不低于92%,根據上述統計結果,山高h為多少米時該作物的成活量最大?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在矩形中,
是
上一點,點
從點
沿折線
運動到點
時停止;點
從點
沿
運動到點
時停止,速度均為每秒1個單位長度.如果點
,
同時開始運動,設運動時間為
,
的面積為
,已知
與
的函數圖象如圖2所示,有以下結論:
①;
②;
③當時,
;
④當時,
是等腰三角形;
⑤當時,
.
其中正確的有( ).
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,拋物線與
軸于點
兩點,與
軸交于點
.直線
經過點
,與拋物線另一個交點為
,點
是拋物線上一動點,過點
作
軸于點
,交直線
于點
.
(1)求拋物線的解析式;
(2)當點在直線
上方,且
是以
為腰的等腰三角形時,求點
的坐標;
(3)如圖2,連接,以點
為直角頂點,線段
為較長直角邊,構造兩直角邊比為1:2的
,是否存在點
,使點
恰好落在直線
上?若存在,請直接寫出相應點
的橫坐標(寫出兩個即可);若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:有一組鄰邊相等,并且它們的夾角是直角的凸四邊形叫做等腰直角四邊形.
(1)如圖1,等腰直角四邊形ABCD,AB=BC,∠ABC=90°.
①若AB=CD=1,AB∥CD,求對角線BD的長.
②若AC⊥BD,求證:AD=CD;
(2)如圖2,在矩形ABCD中,AB=5,BC=9,點P是對角線BD上一點,且BP=2PD,過點P作直線分別交邊AD,BC于點E,F,使四邊形ABFE是等腰直角四邊形,求AE的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com