精英家教網 > 初中數學 > 題目詳情

【題目】閱讀與思考 婆羅摩笈多(Brahmagupta),是一位印度數學家和天文學家,書寫了兩部關于數學和天文學的書籍,他的一些數學成就在世界數學史上有較高的地位,他的負數概念及加減法運算僅晚于中國《九章算術》,而他的負數乘除法法則在全世界都是領先的,他還提出了著名的婆羅摩笈多定理,該定理的內容及部分證明過程如下:
已知:如圖1,四邊形ABCD內接于⊙O,對角線AC⊥BD于點P,PM⊥AB于點M,延長MP交CD于點N,求證:CN=DN.
證明:在△ABP和△BMP中,∵AC⊥BD,PM⊥AB,
∴∠BAP+∠ABP=90°,∠BPM+∠MBP=90°.
∴∠BAP=∠BPM.
∵∠DPN=∠BPM,∠BAP=∠BDC.
∴…

(1)請你閱讀婆羅摩笈多定理的證明過程,完成剩余的證明部分.
(2)已知:如圖2,△ABC內接于⊙O,∠B=30°,∠ACB=45°,AB=2,點D在⊙O上,∠BCD=60°,連接AD,與BC交于點P,作PM⊥AB于點M,延長MP交CD于點N,則PN的長為

【答案】
(1)解:在△ABP和△BMP中,∵AC⊥BD,PM⊥AB,

∴∠BAP+∠ABP=90°,∠BPM+∠MBP=90°.

∴∠BAP=∠BPM.

∵∠DPN=∠BPM,∠BAP=∠BDC.

∴∠DPN=∠PDN,

∴DN=PN,

同理:CN=PN,

∴CN=DN


(2)1
【解析】解: (2)∵∠ACB=45°,∠BCD=60°, ∴∠ACD=45°+60°=105°,
又∵∠D=∠B=30°,
∴∠DAC=180°﹣∠ACD﹣∠D=45°,
∴∠APC=180°﹣45°﹣45°=90°,△APC是等腰直角三角形,
∴PA=PC,∠CPD=90°,
在△CPD和△APB中, ,
∴△CPD≌△APB(AAS),
∴CD=AB=2,
∵∠CPD=90°,PM⊥AB于點M,延長MP交CD于點N,
∴同(1)得:CN=DN,
∴PN= CD=1;
所以答案是:1.
【考點精析】掌握含30度角的直角三角形和圓內接四邊形的性質是解答本題的根本,需要知道在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半;把圓分成n(n≥3):1、依次連結各分點所得的多邊形是這個圓的內接正n邊形2、經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某校在“626國際禁毒日”前組織七年級全體學生320人進行了一次“毒品預防知識”競賽,賽后隨機抽取了部分學生成績進行統計,制作如表頻數分布表和頻數分布直方圖,請根據圖表提供的信息,解答下列問題:

少分數段(x表示分數)

頻數

頻率

50≤x<60

4

0.1

60≤x<70

a

0.2

70≤x<80

12

b

80≤x<90

10

0.25

90≤x<100

6

0.15


(1)表中a= , b= , 并補全直方圖
(2)若用扇形統計圖描述此成績分布情況,則分數段80≤x<100對應扇形的圓心角度數是;
(3)請估計該年級分數在60≤x<100的學生有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABCD的對角線AC,BD相交于點O,AE=CF.

(1)求證:△BOE≌△DOF;

(2)連接DE,BF,若BD⊥EF,試探究四邊形EBFD的形狀,并對結論給予證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,如圖,平行四邊形ABCD中,E是BC邊的中點,連DE并延長交AB的延長線于點F,求證:AB=BF.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知等邊△ABC,請用直尺(不帶刻度)和圓規,按下列要求作圖(不要求寫作法,但要保留作圖痕跡):
(1)作△ABC的外心O;
(2)設D是AB邊上一點,在圖中作出一個正六邊形DEFGHI,使點F,點H分別在邊BC和AC上.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是由射線AB,BC,CD,DE,EA組成的平面圖形,則∠1+∠2+∠3+∠4+∠5= .

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】霧霾天氣已經成為人們普遍關注的話題,霧霾不僅僅影響人們的出行,還影響著人們的健康,太原市會持續出現霧霾天氣嗎?在2016年2月周末休息期間,某校九年級1班綜合實踐小組的同學以“霧霾天氣的主要成因”為主題,隨機調查了太原市部分市民的觀點,并對調查結果進行了整理,繪制了如下不完整的統計圖表,觀察并回答下列問題:

類別

霧霾天氣的主要成因

百分比

A

工業污染

45%

B

汽車尾氣排放

m

C

城中村燃煤問題

15%

D

其他(綠化不足等)

n


(1)請你求出本次被調查市民的人數及m,n的值,并補全條形統計圖;
(2)若太原市有300萬人口,請你估計持有A,B兩類看法的市民共有多少人?
(3)學校要求小穎同學在A,B,C,D這四個霧霾天氣的主要成因中,隨機抽取兩項作為課題研究的項目進行考察分析,請用畫樹狀圖或列表的方法,求出小穎同學剛好抽到B(汽車尾氣排放),C(城中村燃煤問題)的概率.(用A,B,C,D表示各項目)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】“五一”小長假,小穎和小梅兩家計劃從“北京天安門”“三亞南山”“內蒙古大草原”三個景區中任意選擇一景區游玩,小穎和小梅制作了如下三張質地大小完全相同的卡片,背面朝上洗勻后各自從中抽去一張來確定游玩景區(第一人抽完放回洗勻后另一人再抽去),則兩人抽到同一景區的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知當x1=a,x2=b,x3=c時,二次函數y= x2+mx對應的函數值分別為y1 , y2 , y3 , 若正整數a,b,c恰好是一個三角形的三邊長,且當a<b<c時,都有y1<y2<y3 , 則實數m的取值范圍是

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视