【題目】如圖,在邊長為1正方形ABCD中,E、F、G、H分別是AB、BC、CD、DA上的點,3AE=EB,有一只螞蟻從E點出發,經過F、G、H,最后回點E點,則螞蟻所走的最小路程是( )
A.2B.4C.D.
【答案】C
【解析】
延長DC到D',使CD=CD',G對應位置為G',則FG=FG',作D'A'⊥CD',D'A'=DA,H對應的位置為H',則G'H'=GH,再作A'B'⊥D'A',E的對應位置為E',則H'E'=HE.由兩點之間線段最短可知當E、F、G'、H'、E'在一條直線上時路程最小,再延長AB至K使BK=AB,連接E′K,利用勾股定理即可求出EE′的長.
解:延長DC到D',使CD=CD',G關于C對稱點為G',則FG=FG',
同樣作D'A'⊥CD',D'A'=DA,H對應的位置為H',則G'H'=GH,
再作A'B'⊥D'A',E的對應位置為E',
則H'E'=HE.
容易看出,當E、F、G'、H'、E'在一條直線上時路程最小,
最小路程為EE'==2
.
故選C.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,平行四邊形OABC的頂點A,B的坐標分別為(6,0),(7,3),將平行四邊形OABC繞點O逆時針方向旋轉得到平行四邊形OA′B′C′,當點C′落在BC的延長線上時,線段OA′交BC于點E,則線段C′E的長度為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,從熱氣球C處測得地面A,B兩點的俯角分別為30°,45°,此時熱氣球C處所在位置到地面上點A的距離為400米.求地面上A,B兩點間的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】三角形ABC的三條內角平分線為AE、BF、CG,下面的說法中正確的個數有( )
①△ABC的內角平分線上的點到三邊距離相等
②三角形的三條內角平分線交于一點
③三角形的內角平分線位于三角形的內部
④三角形的任一內角平分線將三角形分成面積相等的兩部分.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,數軸被折成,圓的周長為4個單位長度,在圓的4等分點處標上數字0,1,2,3。先讓圓周上數字2所對應的點與數軸上的數3所對應的點重合,數軸固定,圓緊貼數軸沿著數軸的正方向滾動,那么數軸上的數2009將與圓周上的數字_________重合。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】邊長為a的等邊三角形,記為第1個等邊三角形,取其各邊的三等分點,順次連接得到一個正六邊形,記為第1個正六邊形,取這個正六邊形不相鄰的三邊中點,順次連接又得到一個等邊三角形,記為第2個等邊三角形,取其各邊的三等分點,順次連接又得到一個正六邊形,記為第2個正六邊形(如圖),…,按此方式依次操作,則第6個正六邊形的邊長為( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數學課上,李老師出示了如下框中的題目.
在等邊三角形ABC中,點E在AB上,點D在CB的延長線上,且ED=EC,如圖.試確定線段AE與DB的大小關系,并說明理由. |
小敏與同桌小聰討論后,進行了如下解答:
(1)特殊情況,探索結論
當點E為AB的中點時,如圖1,確定線段AE與的DB大小關系.請你直接寫出結論:
AE DB(填“>”,“<”或“=”).
圖1 圖2
(2)特例啟發,解答題目
解:題目中,AE與DB的大小關系是:AE DB(填“>”,“<”或“=”).
理由如下:如圖2,過點E作EF∥BC,交AC于點F.
(請你完成以下解答過程)
(3)拓展結論,設計新題
在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC.若△ABC的邊長為1,AE=2,求CD的長(請你直接寫出結果).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com