精英家教網 > 初中數學 > 題目詳情

【題目】如圖,∠E=50°,BAC=50°,D=110°,求∠ABD的度數.

請完善解答過程,并在括號內填寫相應的理論依據.

解:∵∠E=50°,BAC=50°,(已知)

∴∠E=   (等量代換)

      .(   

∴∠ABD+D=180°.(   

∴∠D=110°,(已知)

∴∠ABD=70°.(等式的性質)

【答案】BAC AB DE 同位角相等,兩直線平行 兩直線平行,同旁內角互補

【解析】

先根據等量代換以及同位角相等,兩直線平行判定ABDE再根據兩直線平行,同旁內角互補即可求得∠ABD的度數。

解:∵∠E50°,∠BAC50°,(已知)

∴∠E_BAC 等量代換)

ABDE同位角相等,兩直線平行

∴∠ABD+D180°兩直線平行,同旁內角互補

∴∠D110°,(已知)

∴∠ABD70°.(等式的性質)

故答案為:(1). BAC (2). AB (3). DE (4). 同位角相等,兩直線平行 (5). 兩直線平行,同旁內角互補

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某市準備將一批帳篷和食品送往扶貧區.已知帳篷和食品共320件,且帳篷比食品多80件.

(1)直接寫出帳篷有   件,食品有   件;

(2)現計劃租用A、B兩種貨車共8輛,一次性將這批物資全部送到扶貧區,已知兩種車可裝帳篷和食品的件數以及每輛貨車所需付運費情況如表,問:共有幾種租車的方案?最少運費是多少?

帳篷(件)

食品(件)

每輛需付運費(元)

A種貨車

40

10

780

B種貨車

20

20

700

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸相交于A(﹣1,0),B(3,0),與y軸交于點C(0,3).

(1)求拋物線的解析式;
(2)連接BC,點P為拋物線上第一象限內一動點,當△BCP面積最大時,求點P的坐標;
(3)設點D是拋物線的對稱軸上的一點,在拋物線上是否存在點Q,使以點B,C,D,Q為頂點的四邊形為平行四邊形?若存在,求出點Q的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為提高節水意識,小申隨機統計了自己家7天的用水量,并分析了第3天的用水情況,將得到的數據進行整理后,繪制成如圖所示的統計圖.(單位:)

(1)求這7天內小申家每天用水量的平均數和中位數;

(2)求第3天小申家洗衣服的水占這一天總用水量的百分比;

(3)請你根據統計圖中的信息,給小申家提出一條全理的節約用水建議,并估算采用你的建議后小申家一個月(30天計算)的節約用水量.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在正方形ABCD中,P在對角線AC上,EAC的延長線上,PBPM , DEEF.

(1)求證:∠CDE=∠F
(2)若AB=5,CM=1,求PB的長;
(3)如圖2,若BF=10,△QCF是以CF為底的等腰三角形,連接DQ , 試求△CDQ的最大面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=ax-2ax-3a(a<0)與x軸交于A、B兩點(A在B的左側),與y軸交于點C,拋物線的對稱軸與拋物線交于點P,與直線BC交于點M,且PM= AB.

(1)求拋物線的解析式;
(2)點K是x軸正半軸上一點,點A、P關于點K的對稱點分別為 、 ,連接 、 ,若 ,求點K的坐標;
(3)矩形ADEF的邊AF在x軸負半軸上,邊AD在第二象限,AD=2,DE=3.將矩形ADEF沿x軸正方向平移t(t>0)個單位,直線AD、EF分別交拋物線于G、H.問:是否存在實數t,使得以點D、F、G、H為頂點的四邊形是平行四邊形?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形網格中有ABC,若小方格邊長為1,請你根據所學的知識解答下列問題:

(1)判斷ABC是什么形狀?并說明理由.

(2)求ABCBC邊上的高.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,反比例函數y= (x>0)的圖像交矩形OABC的邊AB于點D,交邊BC于點E,且BE=2EC.若四邊形ODBE的面積為6,則k=.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:ABC是等腰直角三角形.A=90°,CE平分∠ACBAB于點E.

(1)如圖1,若點D在斜邊BC上,DM垂直平分BE,垂足為M.求證:BD=AE.

(2)如圖2,過點BBFCECE的延長線于點F.CE=6,求BEC的面積.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视